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tracking with weighted discriminative e
dictionaries

Penggen Zheng'@, Huimin Zhao', Jin Zhan', Yijun Yan?,
Jinchang Ren?, Jujian Lv' and Zhihui Hu:mgI

Abstract

Existing sparse representation-based visual tracking methods detect the target positions by minimizing the recon-
struction error. However, due to complex background, illumination change, and occlusion problems, these methods
are difficult to locate the target properly. In this article, we propose a novel visual tracking method based on
weighted discriminative dictionaries and a pyramidal feature selection strategy. First, we utilize color features and
texture features of the training samples to obtain multiple discriminative dictionaries. Then, we use the position
information of those samples to assign weights to the base vectors in dictionaries. For robust visual tracking, we
propose a pyramidal sparse feature selection strategy where the weights of base vectors and reconstruction errors
in different feature are integrated together to get the best target regions. At the same time, we measure feature
reliability to dynamically adjust the weights of different features. In addition, we introduce a scenario-aware
mechanism and an incremental dictionary update method based on noise energy analysis. Comparison experi-
ments show that the proposed algorithm outperforms several state-of-the-art methods, and useful quantitative and
qualitative analyses are also carried out.

Keywords
Visual tracking, similarity weights, sparse representation, incremental update, weighted dictionary
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Introduction

As a subtask of computer vision, visual target tracking has
always drawn many attentions for decades, and many
advanced methods have been explored. However, complex
situations such as occlusions, target deformation, rotation, T ;
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candidate targets by maximizing the similarity or find the
decision boundaries of the target and the background.

To get the satisfied tracking performance, two key
issucs need to be addressed. First, since the appearance
of the target changes frame by frame throughout the
video sequence, the meost discriminating samples in the
current frame may not last for a long time and tend to
result in a model overfitting. So, the improvement of
long-term tracking performance is an important issue.
Second, Unpredictable target deformation and back-
ground clutter in the sampling region cause a negative
impact on the selection of candidate samples. Thus, the
elimination of these obstacles to advance tracking per-
formance in the case of small target samples is also an
important issue.

To address both issues, sparse representation-based
tracking solutions have been proposed, such as L1
tracker.” Because of insensitivity to the target noise, this
kind of methods has a strong tracking robustness when
target deformation occurs. However, single-feature and
the initial discriminative dictionary do not satisfy com-
plex tracking scenarios. Moreover, the object localization
under the frequent online updating often brings drift-away
problems as some negative samples are mis-tracked.
These problems remain difficult in the literature of sparsc
representation-based trackers. Hence, a natural question is
how we can augment positive samples in the [eature space
to capture target appearance variations in the temporal
domain.

In this work, we take advantage of the recent progress
in discriminative dictionary learning method label con-
sistent K-SVD (LC-KSVD)'®!? to facilitate the diction-
ary learning and to propose a novel tracking method
with weighted dictionaries incremental learning and pyr-
amidal feature selection strategy. In summary, this work
has the following main steps. Firstly, we model the dis-
criminative dictionaries from positive and negative sam-
ples based on two feature descriptors, where different
features correspond to different dictiomaries. Secondly,
according to the center distance from the training sam-
ples to the target, we assign Gaussian weights for each
basiy vector in different feature dictionaries, which are
used to measure the similarity of spatial structure to
improve the accuracy of sparse feature selection.
Finally, we select the best sample region by similarity
measurement and fusion of the multiple features recon-
struction error of candidate samples.

The article is organized as follows. We introduce the
research background in the “[ntroduction™ section and
review the related work in the “Related work™ section.
Afterwardy, the “Proposed mcthod™ section describes the
proposed method in detail, including dictionary represen-
tation and construction, incremental dictionary updating,
and adaptive feature fusion strategy. The experiments are
given in “Experimental results and comparison.” We

conclude the article and discuss future work in the
“Conclusion and future work™ section.

Related work

In this section, we briefly review the relevant literature of
object tracking algorithms in recent year, including deep
learning-based tracking methods'' 7% 2324 and sparse
representation-based tracking method.'+3->6:2 28.30:31

The main advantage of deep learning-based tracking
methods lies in their powerful characterization of depth
features. It brings a new research direction for solving
various challenges in visual tracking. Wang and
Yeung®® proposed deep learning tracker and performed
unsupervised off-line depth pretraining on large-scale
natural image data sets. The idea of transfer learning
reduces the requirement of training samples and
improves the performance of the tracking algorithm.
Then, they propose structured output-deep leaming
tracker!! and usc convolutional neural network {CNN)
model to solve the sensitivity of model updating. Qi
et al.? proposed a novel CNN-based tracking method,
which considers the features from all CNN layers and
hedge these features into a single stronger one. Further-
mere, they propose a hedging deep feature-based track-
ing framework'? which use correlation filters to feature
maps of each CNN layer to construct a weak tracker and
design a Siamese network te define the loss of cach
weak tracker. The tracker achicves favorable perfor-
mance on challenging image sequences.

To solve the imbalance between positive and negalive
samples in video tracking, Zhang et al.'* proposed an
attribute-based CNN with multiple branches, where each
branch is responsible for classitving the target under a
specific attribute. The tracker reduces the appearance
diversity of the target under each attribute and thus
requires fewer data to train the model. Qi et al.'® proposed
to integrate the point-to-set/image-to-imageSet distance
metric learning {DML) into visual fracking. The point-
to-set DML is conducted on CNN features of the fraining
data, and the tracking result is located by the minimal
distance to the target template. Because the methods
based on matching tracking cannot deal with the problem
of target rotation in the plane very well, Zhong et al.'®
proposed a hierarchical tracker that leams to move and
track by a coarse-to-fine verification, The coarse level
utilizes a recurtent CNN-based decp Q-network to learn
data-driven searching policies, The idea of learning target
position from coarse to fine is helpful to deal with target
scale change and improve the accuracy of tracking target
border. The authors also apply this idea to multi-person
tracking and propose a deep alignment network-based
multi-person tracking method!” with occlusion and
motion reasoning which achieves good performance.
Wang et al.>* proposed a deep learning-based hybrid
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Figure |. The main tracking process of the proposed approach.

spatiotemporal saliency feature extraction framework for
saliency detection from video footages.

Sparse representation-based tracking methods show
strong robustness in some tracking scenarios. Therefore,
many visual tracking methods™*>?73"3? based on sparse
representations have been proposed. Local sparse repre-
sentations are widely used in visual tracking.”®*?** Zhang
et al.’ summarized and evaluated some classical tracking
methods based on sparse representation. The process of
sparse representation-based trackers can be roughly
divided into two stages. The first stage acquires a sparse
sample set around the target, and the second stage uses a
classifier to classify each sample as a target or back-
ground. However, the positive samples obtained from the
first frame of video are far from meeting the requirement
of label data volume in classifier training, and the positive
and negative samples are imbalanced greatly, which
makes it impossible to capture the rich appearance
changes of the target. These limitations are also reflected
in some deep learning-based trackers®' ? that use this
two-stage framework.

In the target tracking process, a good model update
strategy can improve the tracking effect and tracking abil-
ity. Lu et al.”® used incremental subspace learning meth-
ods to reconstruct a new template and then utilized it to
replace the old one. However, the updated base vector will
gradually degrade in the scene where noise or occlusion
exists. In addition, Mei and Ling’ replaced the least
important template with the current template based on the
frequency of use of the dictionary template. Han et al.”’
updated the dictionary template in a random replacement
manner.

The combination of multiple features enhances the char-
acterization capabilities of the model and is applied to

many different classification tasks. From the perspective
of visual attention saliency, Yan et al. % used Gestalt rule
to guide the saliency detection by characterizing human
visual system (HVS) features and forming targets and pro-
posed a method to cognitively detect and track salient
objects from videos by combining red-green-blue (RGB)
image and thermal image. The proposed fusion-based
approach can successfully detect and track multiple human
objects in most scenes regardless of any light change or
occlusion problem. Lan et al.*” used an unreliable feature
detection method to detect unreliable features. However,
the representation of reliable features is still suppressed
by the joint sparse framework, and different features are
limited to similar sparse patterns. Mai and Ling® fused
multiple features for appearance modeling and detect the
outlier particles. The same sparse pattern is used for all
features of the non-outlier particles.

In this article, we propose a novel multifeatures
dictionary-based sparse tracking method, where a spe-
cific feature dictionary is built upon hybrid features
with the ability of independently maintaining. Then an
incremental dictionary update strategy is proposed to
reduce the redundancy of sparse dictionaries while
increasing the diversity of positive samples. The output
of these dictionaries responses in a different sparse pat-
tern for the final comprehensive decision during the
tracking process.

Proposed method

In this section, the proposed method including three mod-
ules is introduced. The main framework of our method is
shown in Figure 1. We maintain two sets of samples (posi-
tives and negatives) to construct weighted feature
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Figure 2. Initial dictionary learning and the structure of multiple dictionaries.

dictionaries. In the tracking process, the samples are spar-
sely decomposed by the weighted dictionaries, and the
weights of the samples can be obtained and used to select
candidate samples. By comparing the reconstruction errors
of these candidate samples, we can select the most similar
sample as the tracking result.

Dictionary representation and construction

In sparse representation theory, dictionary is composed of
super-complete base vectors to obtain a more concise rep-
resentation of the appearance of the target. For this purpose,
three types of sets, that is, the positives 7, the backgrounds
B, and the noise L are integrated together. The initial dic-
tionary D of the samples at the first frame can be repre-
sented as D = [D”, D?, D*], where D", D, and D" are the
sets of 7, B, and L, respectively. In the tracking process, a
candidate sample y can be represented by the sparse repre-
sentation (equation (1))

yDy= [DT,DB,DL} f (1)
e

where D is the discriminative dictionary, z is the target
coefficient, v is the background coefficient, e is the noise
coefficient, and ~ is the sparse coding. In this article, the
LC-KSVD'® method is used to unify dictionary learning
and classification labeling.

Figure 2 shows the construction process of the initial
dictionary. The center of the initial target is set as the
center of the circle, pixels in the range of radius r, are
sampled as positive samples, and pixels in the range of
radius between r; and r, are dense sampled to obtain
negative samples which contain the background context
around the target.

For the positive and negative samples sampled in the
first frame, we extract two kinds of features to form two
initial dictionaries respectively. After that, we utilize the
correspondence between the sample template and the dic-
tionary base vector and assign the Gaussian weight to each

base vector by calculating the center distance d(i) between
sample templates and the target center. The weight of the
ith base vector is defined as follows

W (i) = exp(—d?(i)/20%) (2)

where a is the standard deviation of normal distribution.
This weight reflects the similarity between the target and
the samples. Finally, we get the weighted discriminative
dictionaries, and each discriminative dictionary corre-
sponds to a weight table.

Incremental dictionary updating

In many existing tracking methods, the appearance
model of target is often updated to reduce the negative
impact of target and background changes in the frames.
In the sparse decomposition, the coefficient ~ of sample
contains the most representative information, where the
noise factor indicates the situation of target occlusion
and tracking drift to some extent. To this end, an incre-
mental dictionary updating strategy is proposed to mea-
sure the change of target or scene by analyzing the noise
energy u (the sum of the noise coefficients e). The larger
the noise energy is, the more significant the deformation
of the target or the greater the change of the scene
causes.

In the frame ¢, the average noise energy expression for

1
all samples can be represented as u;, = —Z,{EK, where uj is
the noise energy of the ith sample, # is the number of all
samples, and k is the feature tag (k = 1 denotes color
feature and k& = 2 denotes noncolor feature). We define a
dynamic threshold to analyze changes of the target and
scenes, which are defined as follows

P{Uy >x(} =« (3)

where x{ is the upper quantile of set Uy (all &g from the
first frame to current frame) and reflects the overall
level of noise energy during the tracking process. If the
tracked average noise energy q exceeds the threshold,
it indicates that the background changes too much in the
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Figure 3. Discriminative dictionary incremental update (a) and noise analysis (b).

current frame. Meanwhile, we also set the minimum
update interval m to make the tracking process more
efficient and the interval between two updates must be
more than m frames.

In scene detection, we use the dynamic threshold of
noise energy to judge the intensity of the scene change.
Based on the target noise energy and the average noise
energy, we can determine whether to perform a dictionary
update. If the update condition is met, we use the samples
of the first frame and the samples of the detected frame to
obtain a new weighted dictionary D;’. The new dictionary
will be used for the next frame tracking task.

The incremental dictionary update trigger mechanism
is shown in Figure 3(a). We divide the positive samples
into two categories: static samples and dynamic samples.
The samples obtained in the first frame are static samples,

and the samples obtained in the trigger update mechanism
are dynamic samples. When the number of positive sam-
ples is larger than that of current negative samples, we use
a new positive sample set to randomly replace one group
of the dynamic samples to reduce the impact of sample
imbalance and maintain the efficiency of dictionary
learning.

Figure 3(b) shows the changes of threshold curve and
noise energy curve in sequence David 3. Five frames with
large changes of target pose and background are selected as
examples for illustration. It can be seen that the selected
examples occur when the noise energy value is higher than
the threshold value. Hence, our updating strategy can detect
and reduce the impact of the background change in real
time through the analysis of noise energy for better tracking
performance.
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Adaptive feature fusion strategy

In this section, we introduce the pyramid feature selection
strategy to locate the target tracking position, as shown in
Figure 4. We use a pyramidal selection strategy in the
feature selection. First, we select WN groups of samples
with the largest similarity weights as candidate samples CS;
(/ is the tag of the candidate samples). The sample similar-
ity weight can be obtained in the sparse decomposition
process. Then, we compare the comprehensive reconstruc-
tion error of the candidate samples to select the best sample
as the tracking result.

In the current frame, all samples S; (i =1, 2,..., n) are
sparsely resolved by different feature dictionaries Dy (k =
1, 2) to obtain sparse coefficients -;-i, where £ is a feature

tag. The similarity weights /¥ and reconstruction errors Ri
are normalized into [0,1] to eliminate the inconsistency of
different feature weights. Each sample S; has k feature
sparse coefficients. The weight values corresponding to the
maximum values of the & feature sparse coefficients are
used as the similarity weights Wi_ (k = 1, 2). Therefore,
we fuse these two weights into a composite weight w',
which is defined as follows

=) " G (4)

/Xy ul /x¢
ZI. 1 “k

In equation (4), we set the dynamic feature weight para-
meters C based on the feature reliability. Then we select a
few candidate samples CS; which have the largest synthetic
weights among all samples and the maximum value of

Cr = (5)

synthetic weights is denoted as WN. When the noise energy
is relatively large, the feature weight Cy, is relatively small.

The definition of Cy is shown in equation (5). Ef is the k-
feature average noise energy of the current frame, and x' is
the k-feature noise energy threshold defined in equation (3).

Then we use the synthetic reconstruction error to select
the best sample from candidate samples. The expression of
the synthetic reconstruction error is as follows

Ri:HkRjk

where Ri represents the reconstruction error of the sample
s; in k-feature, j is the label of the candidate samples.
Finally, we select the one with the smallest synthetic recon-
struction error in the candidate samples as our tracking
result.

(6)

Experimental results and comparison

In this section, the public sequences of VOT2017°° and
OTB100°7 are used for the parameter setting and tracking
performance evaluation of our method, respectively.
Firstly, we experiment with eight RGB sequences of
VOT2017.%® analyze the parameter settings in the feature
selection, and discuss the optimal combination of features.
Then all 74 RGB sequences on the OTB100*” are used for
tracking performance evaluation. The experiment tracking
results of other benchmarking methods are primarily
derived from publicly available results data on the author’s
homepage and OTB100*” homepage. The computer envi-
ronment used by our method is Intel (R) Core (TM) i3-3.7
GHz, RAM-12 GB, and MATLAB R2017a.
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Table I. The average CLEs for different dual feature combinations.”

Type Feawre (s) balll  blanket butterfly crossing godfather pedestrian! sheep wiper Average
Color feature HSY 5.69 1042 21.22 4757 15.06 41.18 43.66 2446 26.16
RGB 438 1785 2721 4075 16.8% 21.71 3546 21636 525
LAB 421 1276 1974 4548 10.35 13.41 4311 16371 39.18
Nencolor feature Haar-like 124 4904 7642 37.05 927 96.55 6.48 2568 39.11
HOG 62.21 4011 419 19.67 19.56 66.26 9336 7048 51.69
Fusion of color feature and HOG + HSY 715 954 2215 17.91 10.13 12.08 7679 1561 2142
noncolor feature
HOG + RGB 2987 985 3013 1953 795 13.54 2224 4333 2206
HOG + LAB 528 975 1977 304 8.65 10.3% 41.28 8183 2592
Haar-like 4 HSV 369 [1.05 2797 4284 7.14 21.26 11.58 19.05 18.32
Haar-like + RGB 407 1631 4441 2899 6.89 22.14 1238 3681 215
Haar-like + LAB  3.23 1492 274 3549 752 15.57 3981 2908 21.63
CLE: center {ocation error.
*Bold data represent the best resules of single video tasks.
Table 2. The average CLEs with different WN values®
Sequences WWN = | YWN =2 YWN =3 WN =4 WN =5 YWN =6 WN =7
ballf 5.066321 5.051257 4621554 31477649 4.148773 4210412 31893678
blanket 18.31654 10.40168 10.52438 11.24985 11.77508 15.84256 15.01424
butterfly 27.08312 28.87616 28.02551 30.88001 30.57644 3084231 30.94732
crossing 4538556 46.618%4 4704421 37.7282 4201624 37.27262 3552469
godfather 9.649543 7.13208 8.276668 7.635623 12.19341 7.387032 7.490803
pedestrian ! 19.45411 20.88936 21.5531 19.13769 34.73961 15.42067 29.3694
sheep 35.82426 30.52743 22.04572 25.955%6 27.32844 4541071 2290445
wiber 20.25632 2419629 22 58765 20.48694 2505795 2648748 19.63991
Average 22.62947 21.71165 20.58485 19.56899 23147949 22.85922 20.59806

CLE: center location error.
*Source: The parameter setting of the variable WN is from | to 7.

Implementation details and analysis

The methed of this article adopts uniform parameter
settings. The number of all samples obtained by Gaus-
sian sampling during the fracking process is 500 and the
sampling radius is 25. The sampling parameter of the
training sample is set to: rp = 4, 1y = 7, r» = 15, The
Haar-like™® feature dimension is set to 150, and the his-
togram bin of a single color channel is set to 36. Corre-
spendingly, the color feature dimension of an RGB
frame is sel to 108. The update time inlerval must be
greater than m = 6 frames, and the noise energy thresh-
old parameter is o = 0.2.

Feature selection. Two types of features (noncolor features
and color features) are used in our proposed model. In this
section, the performance of different feature fusion strategy
on eight RGB sequences (balll, blanket, butterfly, crossing,
godfather, pedestrian, sheep, and wiper) in VOT2017° is
investigated and useful analysis is also carried out.

Table 1 shows the performance of different feature
fusion strategies in terms of average center location crrors
(CLEs}). The CLE is the Euclidean distance between the
tracking result and the standard target position. In

general, dual feature fusion always outperforms single
feature. Feature CIE L*a*b* (LAB) performs poorly in
combination with other non-color features. It is worlh
noting that histogram of orientation gradient {IIOG) +
hue-saturation-value (HSV) has the best performance in
the sequences of blanket, crossing, and wiper, but the
average performance is the second best which is 3.1
lower than the best one, that is, Haar-like + HSV. There-
fore, Haar-like + IISV is selected as fealure fusion sirat-
egy for our following cxperiments.

Candidate samples selection. [n this section, we need to select
a small number of candidate samples to narrow the scope of
the target searching. These candidate samples are obtained
by the composite similarity weights, where the optimal
similarity weight values need to be determined. In this
gection, we discuss the influcnce of the maximum value
of synthetic weights WN on the tracking ¢ffect. The experi-
mental results are shown in Table 2.

In order to ensure the rationality of the experiment, we
do not adopt the dictionary update strategy here. Based on
the above experimental data, we can obtain the curve of
CLE versus WN {Figure 5).
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Table 3. The distribution of Il challenging attributes in the
evaluating sequence set: IV, SV, OCC, DEF, MB, IPR, OPR, OV,
BC, LR, and FM.

IV OPR SV OCC DEF MB FM IPR OV BC LR
Frequency 32 47 49 42 37 26 32 34 |l 24 8

IV: illumination variation; SV: scale variation;, OCC: partial or full occlu-
sion; DEF: non-rigid object shape deformation; MB: motion blur; IPR:
in-plane rotation; OPR: out-of-plane rotation; OV: out of view; BC: back-
ground clutters; LR: low resolution; FM: fast motion.

In Figure 5, the broken line indicates the change in the
effect of a single video tracking. The histogram shows the
average tracking effect of all videos. As shown in Figure 5,
the average value is significantly increased when WN is
greater than 4 and the tracking results of some sequences
are also significantly changed, such as pedestrianli, sheep,
and so on. In the method evaluation experiment, we set WN
to 3 in the experiment.

Experimental evaluation

In the performance evaluation section, we mainly com-
pare the proposed method against eight state-of-the-art
methods including adaptive local sparse appearance
model-based tracker (ASLA'), incremental learning-
based tracker (IVT?), L1 sparse tracker using APG
(LIAPG?), compress tracker (CT®), context tracker
(CXT7), online robust image alignment tracker (ORIA®),
online boosting tracker (OAB®), and tracking learning-
detection tracker (TLD'"). The qualitative and quantita-
tive experimental results are carried out with a useful
analysis. All 74 RGB sequences on OTB100°’ are used
as evaluating sequence set, and the distribution of all chal-
lenging attributes in the evaluating sequence set is shown
in Table 3.

Quantitative analysis. In this section, the tracking results
based on precision plots and success plots are used to com-
prehensively evaluate the performance of different meth-
ods on OTB100.>” The legend of precision plots shows the
values at the error threshold of 20 pixels, and the legend of
success plots show the area under curve (AUC) values. The

overlap score is a measure of the overlap range of the
tracking result and the ground truth tracking box, defined
as OS = intersection area/union area, where intersection
area and union area are the intersection and union of two
regions, respectively.

Figure 6 shows the overall tracking precision plots
and success plots of all nine methods on 74 RGB
sequences of OTB100.>” The precision score and suc-
cess score of our approach are ranked first, higher than
the second methods by 10.6% and 7.4%, respectively.
As can be seen from the precision plots of one-pass
evaluation (OPE), as the location error threshold
increases, the precision of other trackers grows slowly,
and our algorithm improves a lot. In the precision plots
of OPE, the success score of our method is significantly
higher than the other methods.

Table 4 shows the performance of our method and
eight benchmarking methods in terms of success plots
and AUC scores on different attributes. The average
AUC value of our method, TLD and CXT trackers are
top 3 on 11 attributes. TLD and CXT trackers perform
well on attributes of fast motion (FM), motion blur
(MB), out of view (OV), and low resolution (LR) due
to dense sampling. ASLA tracker performs better on
occlusion (OCC), scale variation (SV), and non-rigid
object shape deformation (DEF) attributes by its local
representation.

Figure 7 shows the ranking of success plots of all bench-
marking methods on the 11 challenging attributes. On chal-
lenging attributes of SV, OCC, out-of-plane rotation
(OPR), DEF, FM, MB), OV, in-plane rotation (IPR), and
LR, the success plot of our method ranks the first. Despite
the lack of a scale-changing mechanism, our method still
has the best performance with 0.390 score on SV attribute.
In similar methods, ASLA using local information also has
a good score on SV attribute, but its score is lower than our
method by 3%.

The AUC scores of our method are higher than the sec-
ond method ASLA by 5.8% and 7.4% on the attributes OPR
and DEF, respectively, which shows the effectiveness of
our feature selection mechanism in the target appearance
change. ASLA and TLD trackers use local information and
have good scores on OCC attribute, which are 5.1% lower
than our method. On attributes FM and MB, our method is
8.3% and 7.5% higher than the second method CXT,
respectively. The ASLA tracker used local information and
had the best results on background clutter (BC) and illumi-
nation variation (I'V) attributes, and the success rate score
of ASLA is 0.397 which is better than other similar
methods.

Qualitative analysis. Figure 8 shows the tracking process of
eight similar trackers and our method in the several RGB
sequences. In Figure 8, our method has good tracking per-
formance on the attribute of MB and FM. In sequences
Deer and BlurOwl, although tracking drift sometimes
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Figure 6. The comprehensive precision plots (left) and success plots (right) of comparison methods on 74 RGB sequences of
OTB100.”
Table 4. The AUC value of all trackers in different attributes.”
Ours ASLA IVT OAB LIAPG TLD CT ORIA CXT
1\ 0.357 0.387 0.263 0.278 0.324 0.343 0.215 0.268 0.344
OPR 0.406 0.348 0.232 0.290 0.264 0.342 0.236 0.252 0.328
SV 0.390 0.360 0.241 0.308 0.287 0.348 0.225 0.247 0.345
OocCcC 0.408 0.357 0.265 0.299 0.295 0.357 0.208 0.263 0.311
DEF 0.387 0.313 0.171 0.252 0.253 0.292 0.204 0.170 0.240
MB 0.472 0.213 0.188 0.363 0.322 0.366 0.180 0.171 0.397
FM 0.452 0218 0.165 0.366 0.298 0.358 0.183 0.162 0.369
IPR 0.409 0.356 0.222 0311 0.290 0.343 0.241 0.263 0.373
oV 0.338 0.264 0.190 0217 0.201 0.325 0.185 0.153 0.328
BC 0.380 0.397 0.225 0.261 0.291 0.271 0.252 0.185 0.293
LR 0.350 0.325 0.274 0.301 0.334 0.342 0.208 0.229 0.345
Average 0.395 0.322 0.221 0.295 0.287 0.335 0212 0.215 0.334

AUC: area under curve; ASLA: adaptive local sparse appearance model-based tracker; IVT: incremental learning-based tracker; OAB: online boosting
tracker; LIAPG: LI sparse tracker using APG; TLD: tracking learning-detection tracker; CT: compress tracker; ORIA: online robust image alignment
tracker; CXT: context tracker; IV: illumination variation; OPR: out-of-plane rotation; SV: scale variation; OCC: partial or full occlusion; DEF: non-rigid
object shape deformation; MB: motion blur; FM: fast motion; IPR: in-plane rotation; OV: out of view; BC: background clutters; LR: low resolution.

*Bold data indicate the AUC scores are top three.

occurs, our approach can readjust the tracking position
through the positive and negative templates when drifting
is not severe. In general, OAB has a good tracking effect in
these two videos, but it is prone to have tracking drift
problems when the target moves fast, as shown by #0025
of Deer and #0390 of BlurOwl. CXT tracker can well
recognize the target information in these sequences, but
when the target blur and FM occur, the scale of the tracking
will be abnormal.

Sequences bolt, bolt2, and basketball are typical of
the target DEF. CT tracker is a tracking method based
on compressed sensing and has good performance in
target DEF, as shown in sequence bolt2. However, it
appears that many tracking failures occur in sequences
deer and BlurOwl, which indicates that CT tracker suf-
fers from target FM easily. Our method performs well in
the challenges of target DEF, but not in IV. As shown in

#0700 of sequence basketball, our method shows signif-
icant tracking drift when there is a noticeable illumina-
tion change.

In sequence David3, most trackers suffer from OCC and
BC, but our method can effectively deal with short-term
occlusion of a large area because the adaptive dictionary
update strategy minimizes occlusion interference. From the
sequences David3 and couple in Figure 6, we can see that
OAB, CT, and the proposed approach have good tracking
performance in the background changes. TLD has the prob-
lems of tracking drift and target lost. Both ORIA and CXT
trackers are affected by small-range occlusion, which
causes to tracking failure. In sequence David3 #0146, a
wide range of occlusions also leads to tracking failures of
CT and OAB. Our method effectively identifies the target
location in these cases and does a good job for the rest of
tracking tasks.



10 International Journal of Advanced Robotic Systems

S plots of OPE - scale variation (49) Success plots of OPE - occlusion (42) Success plots of OPE - out-of-plane r ion (47)
op 1 e 0s
—— G joaea | | [—— Ours (0 408 —— Guns [0.408]
or ASLA |0.360] oE ABLA [0.357) o ASLA [0 348]
—— 7LD |0.348] ——TLD.357) ———TLD [0.347]
ot —— T 0. 345 (3] CXT [0.311] ar —— CXT [0.326]
—— CAB (0308 ——— DAB [0.208)
@ L1APG [0.287] a LIAPG [D:288] @ 06
=05 ORIA 0.247] m — T [0.265] ™ ORIA [0.253]
" — T [0.241] s | = DR1A 0,263} o 08 —CT j0.235
@ 0s -~ ——CTj.225 a —— LT [0:208] @ T 0232
o -3 o O o4
o o o
3 03 1 3 S
w w W aa
oz 0z
01 W 1 a1
o el . o . . . :
0 01 B2 03 04 O5 06 07 GA 09 1 B 01 02 B3 04 05 05 07 0B 08 1 0 o1 B2 D3 04 05 OF 07 0B 08 1
Overlap threshold Overlap threshold Overlap threshold
Success plots of OPE - deformation (37) e Success plots of OPE - fast motion (32) Success plots of OPE - motion blur (26)
o e ey ! gl et b @
——— O [0.367] b ——— Qurs [0.457) [—— Oun [0.472]
ar ——asuAnty |4 oEr CXT [0.363] 08 ——— T [0.357)
e TLD) |0.202] { = OAB [1.366) TLD [0.388)
08 L1APG o.2s3|| | orr = TLD [0.358) o7 —OAB [} 363]
—— 0B 10,2521 | ——L1ARG [0208] ——L1APG 10,322}
] ——— CXT [0.240) Losr ASLA [0.218] @ 06 ASLA [0 213]
§ 08 —CT j0.204] ™ ——CT 018y E s (VT [0 1858)
& e T [2,171] ; (T3 — T [0-185] s CT 0,180
@ o4 —— ORIA f0.170) a ORI [0, 162} b —— oRIA [0.471]
§ i § 04
= 03 = 3
@ [N 0 o3
ne 02p [}3
o1 LAY a1
o 3 ol e T
a o1 oz 0.3 a4 as a& or s o8 1 o LR a2 0.3 o4 o8 06 oy o8 ae 1 L o1 02 03 o4 05 o0& o7 B o9 1
Overlap threshold Overlap threshold Overiap threshold
Success plots of OPE - out of view (11) Success plots of OPE - in-plane rotation (34) Success plots of OPE - background clutter (24)
o7 ] [T 08
o Clurs [01.338] L Ours [0.400] = ASLA |0.307)
o8 00T 0,228) LL ——— CXT [0.373] a7 — Curs [0.380]
i =—TLD [0325] — ASLA [0, 385] CXT [0.203]
— ASLA J0.264] 0} TLD f0.043) o8 ———L1APG [0,201]
a8 —— OB (0.217] i ——oaB @3] —— LD 0271
o L1apG o201 | | @ 08 ——— L1APG [0.290] @ AR [ 261
E — T [0 1] 1-!' L ——— DR 0. 253} om0 CT {0,253
w 4 ———CT .85 - 05 —CT[0241] 1 —— T [0.224]
g —— CIRIA 0 153] w — T [0.222] o4 ——— DRIA [0.185]
Boa § 04 g
S = 03
w ~. @ ot @
02 =
az
oz}
ot a1 at
& i = ~ i . . P
L o1 02 03 04 a5 08 er L] o9 1 o o 02 o3 04 os ns or o o8 1 a ot o2 o3 o4 0s aE ar 08 o 1
Overlap threshold Overlap threshold QOverlap threshold
o Success plots of OPE - low resolution (8) Success plots of OPE - illumination variation (32)
[T,
Ques o350 | | | ASLA [0.087]
or CHTj0.345) | 4 o7t Ours {01.357)
TLD [0.342) » — OXT [0:344]
—L1APG [0.234] ; [——TLD 0343}
Lol —— AsiAj0.525] L ——L1ARG [0.324]
2 —— DAB |0.301] O OAB [0.278]
B (1] — T [0.274] m s ORLA [0.368)
& OFIA 0225 i T {0263]
Bia CT j.2086) 1| - - CT[o.215]
g
3 03 3 |5
w w -
02 nzt
ot (3]
N " ~— - &l =
a ot 0z o3 o as as or oa os 1 o LR} 02 a3 04 o5 nE or 08 % 1
Overlap threshold Overlap threshold

Figure 7. Success plots of || challenging attributes on all 74 RGB sequences of oTB100.%

In the last two sequences, Lemming and DragonBaby interference. CXT tracker has tracking scale anomalies,
contain multiple challenge attributes such as SV, OCC, and other methods have repeatedly experienced track-
rotation (IPR or OPR), and OV. It can be seen in Fig- ing drift and tracking failure. In sequence humand8
ure 6 that the tracking drift is easily occurred when the #0054 and #0070, most trackers have tracking failures
target fast rotation, SV, and BC occur simultaneously. when both illumination and scale changes occur. At the
In #1010 and #1078 of sequence Lemming, TLD, CXT, #0101 and #0126 frames of sequence humand, the true
and CT trackers have obvious tracking drift due to fast scale of the target is significantly smaller, and the
rotation, while OAB and our method do not suffer result area selected by our method contains a large
from that and perform better results. In #0084 and amount of background information. This situation
#0096 of sequence DragonBaby, our method performed makes the performance of our tracker unstable and
well for target fast rotation and background prone to tracking failure.
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Figure 8. Comparison of the proposed approach with eight benchmarking methods ASLA, IVT, OAB, LIAPG, TLD, CT, ORIA, and
CXT. ASLA: adaptive local sparse appearance model-based tracker; IVT: incremental learning-based tracker; OAB: online boosting
tracker; LIAPG: L| sparse tracker using APG; TLD: tracking learning-detection tracker; CT: compress tracker; ORIA: online robust
image alignment tracker; CXT: context tracker.
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Conclusion and future work

This article proposes a novel visual tracking method based
on the weighted discriminative dictionaries and a pyrami-
dal feature selection strategy. We utilize color features and
noncolor features of the training samples to build multiple
discriminate dictionaries. Then, we use the position infor-
mation of samples to assign weights to the base vectors in
dictionaries. These weights are used to optimize the process
of target searching for selection of candidate samples, so
that the frequency of abnormal samples can be effectively
reduced. In the tracking process, for reducing the introduc-
tion of interference information in the dictionary and
improving the tracking efficiency, we gradually update the
dictionary based on noise analysis of the sparse coeffi-
cients. During the incremental update process, we sample
the pool to maintain the appearance change of the target
and obtain the current foreground and background infor-
mation. The positive sample pool also uses a random
replacement maintenance strategy to maintain the class
balance of the samples. Experimental results on the all
RGB sequences on OTB100°7 show that the proposed
method is effective to deformation, occlusion, and other
challenges in object tracking.

We will further investigate this work. First, in the video
scene with cluttered background, the target is easy to be
misjudged. We plan to increase the fusion of three or more
features to enhance the accuracy of the target representa-
tion. Secondly, when the target scale changes, it is easy to
drift away even though there are different scales of sam-
pling. So, the mechanism of dealing with the change of
target scale should be further studied.
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Abstract Traditional Chinese Medicine (TCM) illustrates that the physique determines the
susceptibility of human to certain diseases and treatment programs for illness. Tongue diag-
nosis is an important way to identify the physique, but now it is performed by the doctor’s
professional experience and the design of a questionnaire. Consequently, accurate physique
identification cannot be obtained easily. In this paper, we propose a new method to identify
the physique through wild tongue images using hybrid deep learning methods. It begins with
constructing a large number of tongue images that are taken in natural conditions, instead of
in a controlled environment. Based on the resulting database, a new method of tongue coat-
ing detection is put forward that applies a rapid deep learning method to complete the initial
tongue coating detection, and then utilizes another deep learning method, a calibration neu-
ral network, to further improve the accuracy of tongue detection. Finally, an effective deep
learning method is applied to identify the tongue physique. Experiments validate the pro-
posed method, illustrating that physique identification can be performed well using hybrid
deep learning methods.
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1 Introduction

Traditional Chinese Medicine (TCM) is a complete medical system that plays an irreplace-
able role in medical care in China [33]. It follows the holistic and systematic ideas while
Western Medicine does the reductionism thinking mode. TCM has been validated by many
patients and scientists to be very safe and effective in practices. Particularly it can pro-
vide alternative ways when western medicine are unable to supply effective treatment for
some routine ailments such as influenza, allergies, and chronic diseases [15]. Currently
TCM is recognized and practiced not only in China but also in the Southeast Asia, Japan,
United States, Europe, Australia and some other countries. TCM is gradually formed and
developed with a long-term clinical practice, having accumulated a large amount of clin-
ical data and medical literature on diagnosis and treatment over thousands of years [17].
Treating the same disease with different methods and homotherapy or heteropathy are the
basic principles of knowing and treating diseases in TCM [1, 18]. Differentiation is the
premise and basis of treatment, which heavily depends on the individual physique. TCM
categorizes the physique into nine types in the book “Classification and Decision of TCM
Physique™ published by the China Association of Chinese Medicine [7]. These types are
“pinghe,” “yangxu,” “yinxu,” “qixu,” "shire,” “tanshi,” “qiyu,” “xueyu,” and “tebin.” At the
same time, a questionnaire has been designed with criteria to recognize the physique auto-
matically. Subjects usually answer the questions in the questionnaire according to a certain
experience and feeling of the frequency or severity of experience. However, this method
can be easily influenced by the individual’s subjective intention [34], while a large amount
of time is required to complete all testing. In such cases, a more intelligent method than
the questionnaire method is required to perform physique identification automatically and
efficiently.

Tongue diagnosis is one of the most widely used diagnostic methods in TCM [36].
This is because the color and texture features of tongue coating reflect the health sta-
tus of the patient. For example, color information of the tongue coating reflects valuable
information about the state of disease and its correlation with the internal organs [8].
Clinical studies have suggested relationships between visceral cancers, heart diseases, and
abnormalities of the tongue and its coating [26]. Inspection of the tongue can instantly
clarify one’s pathological problems, so that people seeking health care can have their
tongues routinely examined [4]. Therefore, the appearance changes of the tongue coating
are very helpful to TCM practitioners in monitoring the improvement or deterioration of
the patient’s health status. However, tongue diagnosis offers a simple, immediate, inexpen-
sive, and non-invasive solution for various medical applications [30]. It is also side-effect
free, painless, and well suited for remote diagnosis. Therefore, it has been selected to per-
form physique identification [34]. Actually, some tongue image analysis systems have been
advanced to prove its effectiveness not only in Asian medicine, but in Western medicine as
well [12, 13].

As the tongue coating reflects the environment inside the body, there is great reference
value in using the tongue to determine physical characteristics. Various physiques corre-
sponding to the tongue are mentioned in the book “Classification and Decision of TCM
Physique” [7]. For example, “pale red tongue, the tongue body fat soft, side have teeth
marks” is provided for the “qixu” physique. These physical characteristics can be applied
to design the questionnaire for identifying physiques. However, it is based on interrogation,
human subjects have great difficulties in making objective decisions. If the tongue coating
picture of a subject can be automatically taken and then stored in the form of a digital image,
an intelligent diagnosis can be achieved to obtain the more objective and accurate results [4,
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37]. Actually, various intelligent methods have been applied to study TCM theory [5, 17],
such as clustering analysis, association rules and regression analysis, and pattern recogni-
tion. Objective quantitative methods to evaluate the color, texture, and surface of the tongue
and to define their relationships with patients’ health conditions have also been devised
[26]. Some related tongue diagnosis systems have been also proposed [9, 10, 30]. However,
to the best of our knowledge, these systems generally assume that the tongue images are
taken in a well-controlled environment, including lighting conditions and fixed tongue posi-
tion [19]. To effectively deal with tongue images taken under different conditions, where
the color of tongue images may be different, many methods have been proposed to perform
color correction on the captured tongue images in TCM systems [8, 29, 37, 38]. How-
ever, they are all based on traditional machine learning methods, instead of deep learning
methods.

Various factors impact the quality of captured tongue images, such as illumination con-
ditions and random noise. These will definitely reduce the accuracy and reliability of the
subsequent automatic tongue diagnosis analysis [38]. Another challenge results from vari-
ations in the tongue features used in diagnosis, such as color, texture, coating, and shape,
which results in the difficulties in precisely extracting the tongue region from the entire
image. Finally, few machine learning methods are applied to perform tongue physique iden-
tification. To meet these challenges, in this paper we propose a new method to identify the
physique through natural tongue images using hybrid deep learning methods on the large
number of training databases. The main contributions of the paper are as follows. A large
number of tongue images in natural conditions are constructed instead of taking the photos
in a controlled environment. Second, a method of tongue coating detection is put forward
that applies a rapid deep learning algorithm to complete the initial detection of the tongue
coating and then applies another deep learning method, a calibration neural network, to fur-
ther improve the accuracy of tongue coating detection. Finally, an effective deep learning
method is selected to identify the tongue physique, illustrating that physique identification
can be performed automatically.

2 Related work

The proposed method involves in the quality of tongue images, tongue detection, and
tongue physique identification. They are theoretically related to object detection and image
classification,which are performed primarily using deep learning methods. For example,
Li et al. used a cascade structure that trained three dierent classication models and three
bounding-box regression models to transform the face detection into three “categorical-
regression” cascade phases [16]. We also ever presented a new cascade structure face
detection method[20], which uses a full convolution network to get face candidates quickly
and the bounding-box regression model to perform face regression until the termination
condition was satised. Finally, a binary classication CNN was used to obtain the nal result.
However, as there are a huge number of references related to image classification, we limit
the related work to the tongue image field.

2.1 Capturing conditions of tongue images
Tongue images, captured in the natural environment instead of a well-controlled one, incor-

porate different amounts of color distortion when compared to actual tongue images. This
might result in incorrect diagnosis and prescription [37]. For example, an android-based

(E’_J Springer
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application based on the Canny algorithm was developed for automatic tongue diagnosis
[36], but it does not discuss calibration of image colors due to various lighting conditions.
Many methods can be applied to perform color correction on captured tongue images in
TCM tongue digital analysis systems [14, 29, 37, 38]. For example, based on hue, satura-
tion, and value color space, new color brightness threshold parameters have been devised
to improve the efficiency of tongue coating separation procedures and to eliminate shadows
[8]. The TongueDx system presents a tongue color calibration method by using teeth color
as a standard color [6]. These methods aim to obtain high-quality tongue images. Different
from these, the proposed method applies deep learning methods to learn features automat-
ically from all kinds of tongue images captured in different environments, so that it can
better deal with tongue images captured under any conditions when working.

2.2 Detection

An accurate segmentation of the tongue coating from a tongue image is a crucial step
for automatic tongue diagnosis in TCM. Some methods have been proposed to segment
the structure of interest for medical images, such as the bielliptical deformable contour
approach based on active contour models [23]. Because this method is very sensitive to the
initial curve, an automatic tongue segmentation method is proposed that combines a region
merging strategy with initial watershed segmentation [21]. Another novel method was pro-
posed that combines the geometrical snake model with the parameterized GVF snake model
[25]. This method utilizes the prior knowledge of tongue shape and the tongue’s location
in tongue images. In addition, a double geo-vector flow was applied to detect the tongue
edge and segment the tongue region in the image [26]. Generally, these approaches can be
divided into two classes: region-based approaches and edge-based ones [32]. However, two
key difficulties are encountered in their use. First, the initial contours must be close to the
true boundaries; second, active contours progress into boundary concavities with difficulty.
Taken as a whole, these methods fail to satisfy demands for both accuracy and robustness
simultaneously, which are the basic requirements for a successful segmentation of tongue
images. Therefore, a new method combining these two categories was proposed, which
often performs better [32]. All these methods are based on image processing technology.
Recently, some machine learning methods have been applied to tongue coating separation,
such as the Gaussian conditional density model [11] and fuzzy clustering [2]. However,
these are traditional machine learning methods, and they do not use the deep learning meth-
ods to automatically segment the tongue coating. In these methods, the accurate judgment
of separation is still ambiguous because of under-detection or over-detection of the tongue
coating.

2.3 Physique identification

Currently, physique identification is often performed by answering a personal questionnaire
that is designed to recognize the individual’s physique. The answer to each question in the
questionnaire will be selected from five cases, including no (don’t), little (a bit), some-
times (some), often (quite), and always (very). Answers to all questions are then applied to
determine the physique type using a predefined computing method. However, this method
can be easily influenced by the individual’s subjective intention [34]. It is very difficult
for human subjects to make objective decisions in answering certain questions. In addition,
the questionnaire-based testing and analysis is time consuming. However, features of the
tongue, such as color, texture, and geometry, are often applied to examine health conditions
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in TCM [31, 35]. For example, the quantitative chromatic and textural features are first
extracted from tongue images and then a Bayesian network is employed to model the rela-
tionship between these features and diseases [22]. Geometric features such as length, area,
and angle of the tongue are also applied to automatically recognize and analyze tongue
shapes [5]. On the whole, these tongue diagnoses are always concerned with the identi-
fication of syndromes rather than with the connection between tongue appearances and
physique identification [22]. Only in one work were tongue features such as color and tex-
ture features used to recognize the physique [34]. All features used in these techniques are
hand-crafted, instead of being automatically learned from a large number of training sam-
ples. Moreover, machine learning methods are not applied in them to perform physique
identification automatically.

3 Framework of the proposed approach

In order to perfectly identify the physique in the natural environment, we propose a new
method to identify the physique through natural tongue images using hybrid deep learning
methods on large training databases. The method is illustrated in Fig. 1, and contains six
steps. The first step is tongue image acquisition, where the tongue image is taken with
a camera in the natural environment. The second step is initial tongue coating detection,
where a deep learning method designated Faster R-CNN is applied [24]. Namely,tongue
region extraction out of the whole face image is performed in this step. In the third step,
another deep learning method, VGG, is applied to further calibrate the detected tongue
region to obtain a more accurate tongue coating image [16, 27]. In the fourth step, the
tongue coating image is segmented from the entire tongue image. The fifth step performs
physique identification on the segmented tongue image using the deep learning method
named GooglLeNet [28]. Finally, the recognized physique types are outputted.

(1 tongue image acquisition (2 tongue coating detection (3 tongue coating calibration

Eﬁ

® output physique types ® physique identification @ tongue coating separation

Fig. 1 Architecture of proposed method
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3.1 Databases

As deep learning methods are applied to perform the physique identification, it is neces-
sary to have a large number of tongue images as training databases with predefined labels.
However, such databases are not publicly available. Therefore, we must construct them by
cooperating with hospitals, in which the tongue images of patients are directly captured
and then labeled physique types by Chinese medicine experts. In this way, a large num-
ber of tongue images with all kinds of qualities are collected to construct the tongue image
databases for tongue coating detection, tongue coating calibration, and physique identifi-
cation. Generally, a person may have several physique types, which undoubtedly increases
the difficulty of physique identification. In order to reduce the difficulty of identification,
the task is simplified to be a single label classification problem in this paper. That is to say,
each tongue image only corresponds to one of the physique types with the largest belief
degree.

Tongue coating detection database The tongue coating detection database is composed
of the images containing part of the face and tongue fur. Tongue coating detection detects
the tongue image from the entire image and then extracts it as a separate image. We utilize
a deep neural network to perform this task. In order to train the deep neural network model,
a large number of training samples are required for tongue coating detection, in which each
sample contains the captured image showing the tongue and the real position information
of the tongue image in the entire captured image. In this paper, a tongue coating detection
database was constructed that contains 5683 tongue coating images with the corresponding
real positions of the tongue coatings.

Tongue coating calibration database The tongue region image extracted by the tongue
coating detection method may deviate from its correct position. These deviations can be
defined as belonging to many categories. Each deviation can be calibrated to its correct posi-
tion based on predefined rules. To automatically classify the deviation type of the detected
tongue region image using a deep learning method, a large number of training samples com-
posed of the detected tongue image region and its corresponding deviation type should be
prepared in advance to form the tongue coating calibration database.

The tongue coating calibration method is inspired by face region calibration [16], where
the deviation category comprises the proportion of the scale, deviation in the X direction,
and deviation in the Y direction. The specific deviation categories are defined by Eq. (1),
where (x, y, w, h) represents x and y coordinates of the upper left, width, and height of the
true tongue coating region. By using the inverse operation of (1), the tongue coating region
can be adjusted to the correct position by the deviation type. In this way, each tongue coating
image can produce 45 new regional tongue images according to (1). Each new regional
tongue image is intercepted and annotated by deviation category. All of them are applied to
build the tongue coating calibration database, which in the example used in this paper, has
a total of 255735 tongue images. The relevant formulas are expressed as follows:

(x_x"w'_v_ﬂ_ﬁ_ﬁ), (1)

Sh Sn Sn Sh

s, € {0.83,0.91, 1.0, 1.10, 1.21}, (2)
xp € {—0.17,0,0.17}, 3)
yn € {—0.17,0,0.17}. 4)
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Table 1 Sample distribution of tongue physique identification database

Data qixu yingxu yangxu tanshi shire qiyu xueyu tebin pinghe

Number 7840 3670 1189 2514 2557 2059 933 91 1629

Tongue physique identification database In order to perform tongue physique iden-
tification, a larger tongue physique identification database is constructed, which contains
22482 images with their physique types assigned by TCM experts. Each image is the tongue
coating image extracted from the captured tongue images by tongue coating detection and
tongue coating calibration, thus reducing the impact of other parts of the tongue image on
tongue physique identification. The sample distribution of the tongue physique identifica-
tion database is illustrated in Table 1,where the number value indicates that the number of
tongue images belong to each physique. The samples corresponding to each physique are
presented in Fig. 2.

3.2 Tongue coating detection

Tongue coating detection can be regarded as a kind of object detection. As Faster R-CNN is
anewly proposed and excellent object detection method [24], it is applied to perform tongue
coating detection. Faster R-CNN, whose structure is presented in Fig. 3, is composed of a
convolutional neural network (CNN), a region proposal network (RPN), and a CNET.

CNN is mainly used to extract features of tongue images based on the idea of shared
weights and good nonlinear learning ability. It is implemented here by using the VGG-16
model with the first 13 layers, while the fully connected layer is removed. In this way,
convolution, ReLU, and pooling (Max) operations are mainly involved.

RPN is the key component of Faster R-CNN. It is a fully convolutional network that
simultaneously predicts object bounds and objectiveness scores at each position. RPN is

qixu yingxu yangxu tanshi shire

qiyu xueyu tebin pinghe

Fig. 2 Architecture of proposed method
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Tongue image

Fig. 3 Structure of Faster R-CNN in tongue detection method

trained end-to-end to generate high-quality region proposals. It uses a sliding window to
generate a fully connected feature vector with 256 dimensions on a convolution feature map
generated in a convolutional neural network. The feature vector is then applied to produce
two branches with two fully connected layers: the c¢ls layer and reg layer. The cis layer per-
forms a binary classification task to determine whether the current region is the foreground
or background, where the training database for classifying foreground or background is con-
structed manually in advance. The loss function of the classification is Cross Entropy. The
reg layer is a regression task used to predict the candidate region coordinates (x, y) as well
as the size (w, h) corresponding to the central anchor point of the current region. The anchor
point is located at the center of the sliding window. An anchor can generate k different can-
didate regions with different scales and ratios between width and height, so that the same
sliding window can be used to predict the candidate regions. Here, there are four kinds of
scales and three kinds of ratios between width and height — see Table 2 — leading to a total
of k=12 candidate regions. For a convolution map of size w x h, w x h x k anchor points
can be obtained by using a sliding window of size 3 x 3 where the step size is 1.

The loss function of RPN consists of both the loss function of the classification task and
the loss function of the regression task, corresponding to the c¢ls layer and the reg layer. The
loss function of the classification task is defined by cross-entropy loss, shown in (5), where
x is an n-dimensional vector that contains the rating values of n categories, and class is the
target category:

n
Les(x,class) = —x[class] + [n Ze'ﬁ-” 2 (5)
j=l1

Table 2 Setup parameters for

anchors Parameters Values
Scale values 0.1,02,04,08
Ratios between width and height 11, 2:1; 12
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The loss function of the regression task uses a smooth L loss, which is used to predict
the coordinates, width, and height of the target region. It is defined by (6), where x is the
output value of the neural network and y is the target value:

] 0.5 x (x; = yi), if |xi — yi| < I
Lre,&’(ﬂ‘-s y) = ; Z { |x; — yi| — 0.5, otherwise. ©)

The loss function of RPN can now be defined in (7), where {p;} and {t;} are the outputs
of the cls layer and the reg layer, respectively. If the input sample is the foreground, p;/ = 1,
else p7 = 0. 1" is the correct target area. A is set to 10. We write

| 1
L{{pi}. {t;}) =

Rels

Y Lats(pis PP+ A—— pf Lreg(ti, t}). (7)
i i

Nyeg

Rol pooling is a simplified version of spatial pyramid pooling (SPP)[3], which is able to
deal with inputs of different sizes, making the outputs have the same size. SPP can determine
the size of the final feature vector, and then determine the size of the pool. Rol pooling is a
layer of SPP using only one scale. In our case, Rol pooling is set to 6 x 6 output.

The CNET is mainly composed of box regression and Classifier. Box regression is com-
posed of a fully connected layer, a batch normalization layer, and a Dropout layer, which are
used to predict the location of the target area. Classifier is a neural network classifier com-
posed of a fully connected layer, a batch normalization layer, a Dropout layer, and a Softmax
layer, which is used to identify the target categories. Box regression is used as a regression
task, using a smooth L loss function. Classifier is a classification task using cross-entropy
loss function. The loss function of the entire CNET is a weighted combination of the loss
function of box regression and the loss function of Classifier.

When Faster R-CNN is applied to perform the tongue coating detection, it needs training.
As itis a complex deep neural network, each component of Faster R-CNN must be trained in
advance, and then the entire network is refined through training on the entire database. CNN
shared by both RPN and CNET in Faster R-CNN is applied to train a binary classifier to
perform the classification of tongue coating and non-tongue coating. CNN uses the trained
parameters of the first 13 layers of the VGG-16 model and then fine trained on our database
composed of a large number of tongue coating images and non-tongue coating images.
The goal of RPN training is to classify the region of each anchor point to the foreground
or background, and then to regress the target coordinates of each anchor point. Here, the
minimum edge of a tongue image is fixed to 480 pixels. A large number of training samples
with anchor region types are generated in accordance with the four anchor region sizes and
three ratios between width and height. If the Intersection over Union (IoU) value between
the generated region and the correct region is greater than 0.6, it is marked as the foreground
region. If ToU is less than 0.2, the region is marked as the background region. The number
of selected foreground regions and selected background regions are the same.

After training CNN and RPN, both the Classifier and box regression are added to
adjust all parameters by training the entire network. The entire training process proceeds as
follows.

Training process for tongue coating detection

1. Data preprocessing and generation of anchor regions are performed. Each tongue coat-
ing image is horizontally flipped over with 0.25 probability to increase training samples.
The images of both the foreground and background regions are selected in terms of 1:1.

2. The tongue coating image is fed into CNN to generate feature maps.
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3. RPN is applied to generate candidate regions. The sliding window in RPN is utilized to
scan the feature maps generated m the second step to create features for anchor regions.
Features of the foreground and background regions are respectively sent to the cls layer
and reg layer. The Softmax loss for the cfs layer (denoted L ;) and L loss for the reg
layer (denoted L ;. ) are computed. For the foreground region, the reg layer is used to
generate the candidate region. For the background region, the anchor region is used as
the candidate region.

4. Rol pooling is applied to generate fully connected features with a fixed size based
on feature maps of the selected candidate regions. This can avoid the feature size
mconsistency problem due 1o tongue coating images with different sizes.

5. The prediction of the tongue coaling region is performed. The fully connected {eatures
are passed to box regresston and Classifier. Subsequently, 1.1 loss of box regression
(denoted L ,.,) and the negative log-likelihood loss of Classifier (denoted L.g,) are
calculated.

6. Back-propagation is applied to update parameters, where CNET takes Lo + Lecis
as the loss to update its parameters, RPN takes L ..y + L 55 as the loss to update its
parameters, and CNN takes the loss to update its parameters that is the sum of L.,
Lecis, Lpregs and Lpds .

7. Repeat the above steps until convergence is obtained or the maximum number of
iterations is reached,

Testing process for tongue coating detection The tongue coating delection process
based on Faster R-CNN is slightly different from that of the training phase, and contains the
following steps:

1. The data preprocessing for the tongue coating image is performed in the same way as
in the training phase,

2. The preprocessed tongue coating image 1s fed into CNN to generate feature maps.

3. RPN is applied to create candidate regions. The sliding window of RPN is applied to
scan feature maps generated in the second step to generate features of the anchor region.
If it is determined to be the foreground region by the ¢fs layer with confidence up to
0.93, the reg layer is applied to forecast the corresponding tongue coating region as its
candidate region.

4. The optimal regions are selected from all candidate regions. The non-maximum sup-
pression method is applied to eliminate redundant candidate regions so as to find the
best candidate region. Non-maximum suppression always selects candidate regions
with maximum reliability and then filters out those candidate regions with IoU larger
than 0.25. This process is repeated to select all candidate regions with high confidence.

5. Rol pooling generates the fully connected features with fixed size based on the feature
maps of all optimal regions.

6. The fully connected features are fed into Classifier and box regression to predict the
tongue coating regions,

7. The non-maximum suppression method is applied to select the best one {rom predicted
coating regions.

3.3 Tongue coating calibration

Tongue coating detection has been performed well, but not perfectly. Tts performance
must be further improved by adjusting the position of the detected tongue coating region.
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Inspired by face region calibration [16], we use another kind of deep neural network,
called a calibration network, to implement the calibration of the tongue coating position.
It assumes that both the location of the tongue coating and the deviation of the tongue
coating position from its real position can be predicted. Subsequently, the tongue coating
position can be calibrated to its real position. This problem can be treated as a classifi-
cation problem, as deviation categories from the real tongue coating position have been
predefined by (2)—(4). Once the deviation category is determined, the calibration of tongue
coating position can be performed according to the deviation adjustment rules defined
in (1).

The calibration network is also implemented by VGG-16, as it exhibits excellent per-
formance in tongue coating detection. The structure of the calibration network is shown in
Fig. 4.

The calibration network is applied as a classifier to classify the deviation category. The
training of this network is performed by the following steps: (1) Perform the data prepro-
cessing. The mean operation is performed while each image is flipped over with probability
50% to create new samples. (2) Perform the forward propagation. After the preprocess-
ing, each image is fed into the calibration network. After convolution, ReLU, pooling,
full connectivity, and other operations, the Softmax losses of 45 categories are calculated.
(3) Perform the back-propagation. All Softmax losses are back-propagated to update net-
work parameters. (4) Repeat the above steps until convergence is obtained or the maximum
number of iterations is reached.

The testing procedure of the calibration network is composed of the following steps:
(1) The tongue coating region is detected by the tongue coating detection method. (2) The
tongue coating region is resized to 224 x 224. (3) After the mean operation is performed,
the calibration network is applied to obtain the deviation category of the tongue coating. (4)
The deviation of X, the deviation of ¥, and the proportion of the scale are obtained based on
the obtained deviation category. (5) The inverse operation of formula (1) is applied to adjust
the tongue coating region to the correct position.

224%224%3
224*224*64
112*%112*128
I 56*56%256
CC 28*28*%512
M 14*14*512
CC MCCC TETES12
] MCCC MCCC M 4096 4096 45
E F F

I - Image
C - ConvolutiontReLU
M - Max pooling

F - Full connect+ReLU +Dropout

Fig. 4 Structure of calibration network
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3.4 Tongue physique identification

GoogLeNet is applied to perform the tongue physique identification. It is the winner of the
2014 ILSVRC competition, and belongs to the deep convolutional neural network model
[28]. Since the development of the VGG model, convolutional neural networks are being
advanced toward a deeper architecture; that is, they are including increasingly more net-
work layers and parameters, which, however, often poses challenges to computing power.
In order to reduce the computational resources required while improving the neural network
effectiveness, a module called Inception is proposed as a key component of GoogLeNet.
The Inception module, whose structure is shown in Fig. 5, is basically a parallel combina-
tionof 1 x 1,3 x 3,and 5 x 5 rolls. This ensures that the output of the Inception module is
rich in characteristic information. In addition, the Inception module also uses a 1 x 1 convo-
lution layer to reduce the number of features and the amount of computation in the previous
layer. This layer is generally referred to as the bottleneck layer. The 1 x 1 convolution in the
bottleneck layer can be viewed as a combination of features on the previous feature map and
can be used effectively with fewer parameters. In this way, the computational overhead is
greatly reduced without weakening the neural network learning. Since the input features are
all related, the redundancy feature can be removed by the combination of 1 x 1 convolution.
The GooglLeNet structure is shown in Fig. 6, depicting a large number of Inception modules.
Because tongue physique identification is a classification problem with nine physique types,
the last layer of GoogleNet is changed to be a 1 x 1 x 9 fully connected layer. In addition, in
order to better train GoogLeNet, it is trained on the ILSVRC training database as an initiali-
zation, and then is fine trained on our prepared tongue physique identification database.

4 Experiments and validation

To validate our approach, many experiments were conducted on tongue image databases,
against which some related state-of-the-art approaches were also compared.

4.1 Experimental results on tongue coating detection

In order to validate our tongue coating detection method, we apply the Torch deep learning
framework to implement it, and then perform experiments on the constructed tongue coating

Fig. 5 Structure of Inception module
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type patch size/ | Output size | depth | #1x1 #3x3 | #3x3 #5%5 #5x%5 pool | params ops
stride reduce reduce proj
convolution 772 112x112%64 1 27K 34M
max pool 332 | 56%56%64 | 0
convolution 3x3/1 56x56%192 2 64 192 112K 360M
max pool 332 28x28%192 0 |
inception(3a) 28x28x256 2 64 96 | o128 16 32 32 159K 128M
inception(3b) 28x28x480 2 128 128 - 192 32 96 64 380K 304M
max pool 3x3/2 14142480 0 |
inception(4a) 14=14=512 2 192 96 208 16 48 64 364K 73M
inception(4b) 14x14=512 2 160 112 224 24 64 64 437K 88M
inception(4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception(4d) 14x14=528 2 112 144 288 32 64 64 S80K 119M
inception(4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TxT=832 0
inception(5a) 7x7%832 2 256 160 | 320 32 128 128 1072K | 54M
inception(5b) TxT7%1024 2 384 192 - 384 48 128 128 1388K 1M
avg pool 7%7/1 1x1%1024 0 [
dropout(40%) 1x1=1024 0
linear 1%1=1000 1 1000K IM
softmax 12121000 0

Fig. 6 Structure of GoogLeNet for tongue physique identification

detection database, which has 5683 tongue images with each tongue image having only one
tongue coating. This database is divided into a training set and testing set at a 4:1 ratio,
respectively, so that the testing set is made up of 1138 tongue coating images. After 50000
iterations of training, the tongue coating detection model is formed, which will be then used
to detect the tongue coating images of the testing set to evaluate detection effectiveness. The

training parameters for our approach are shown in Table 3.

As the positive and negative tongue coating images are determined according to IoU
value of the marked area, in order to more precisely analyze the effect of the tongue coat-
ing detection, detection results on the testing set are divided into the following categories:
(1) Correct category, referring to the case that classification is correct and IoU between

Table 3 Training parameters for
tongue coating detection method

Parameters Values

Picture size 80640

Batch size 300

Candidate area {482,962, 1922, 3842}
Candidate aspect ratio f1:1,1:2,2:1}
ROI pooling scale 66

Optimization method RMSprop
Learning rate le™>

ALPHA 0.9

Parameter decline factor le™

Maximum number of iterations 50000
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W Correct W Llocalization ®Background 8 Others
Background, 19, 2% | Others, 12, 1%

Localization, 217,
19%

Correct, 890, 78%
Fig. 7 Experimental results of tongue coating detection method

predicted region and true region is greater than 0.5. (2) Localization category, referring to
the case that classification is correct and IoU between predicted region and true region is
distributed from 0.1 to 0.5. (3) Background category, referring to the case that classifica-
tion is correct and IoU between predicted region and true region is less than 0.1. (4) Others
category, referring to the case that classification is in error.

The experimental results on the testing set are shown in Fig. 7. Some examples of
detected tongue coating images are presented in Fig. 8. It can be seen that the method can be
used to identify whether an image contains a tongue coating with high accuracy, up to 98%.
The Correct category obtains an of accuracy 78%, which is the final target. The Localiza-
tion category still accounts for 19%, indicating that there is room for further calibration of
the tongue coating position, so as to further improve the performance of the tongue coating
detection method.

Fig. 8 Examples of detected tongue coating images
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Table 4 Training parameters for

tongue coating calibration Parameters Values

method
Picture size 80640
Batch size 300
Optimization method RMSprop
Learning rate le™3
ALPHA 0.9
Parameter decline factor le*
Maximum number of iterations 50000

4.2 Experimental results on tongue coating calibration

Experiments were conducted to demonstrate the effectiveness of the calibration network.
The training parameters of the network are presented in Table 4 where ALPHA is the
momentum coefficient of the optimization algorithm RMSprop. In the experiments, the
VGG-16 model is first trained by ImageNet images and then used to initialize the first 13
layers of the calibration network. This is why the learning rate is adjusted to a very small
value.

The experimental results are shown in Fig. 9. It can be observed that the accuracy of the
Correct category is up to 91% from the original 78%, while the accuracy of the Localization
category reduces to 7% from the original 19%. This illustrates that the calibration network
can effectively enhance the effect of tongue coating detection. Some examples of tongue
coating calibration are shown in Fig. 10, where the white box is the true tongue coating
region and the red box is the predicted region. It can be seen that the deviations are adjusted
correctly. However, the method can be used to identify whether an image contains the tongue
coating with a higher accuracy of up to 99%.

Bcorrect Mlocalization ™background ®others
background, 17, 1% ~_____others, 12, 1%
localization, 74, 7%

___correct, 1035, 91%

Fig. 9 Results of tongue coating calibration

@_ Springer



6862 Multimed Tools Appl (2019) 78:6847-6868

Fig. 10 Examples of tongue coating calibration

4.3 Experimental results on tongue physique identification

Experiments were conducted to validate our tongue physique identification method. In order
to show the rationality of the selection of GoogleNet, VGG and ResNet are applied as two
representative deep learning methods, and are compared in performing tongue physique
identification, in which VGG uses the 16-layer model and ResNet the 101-layer model.
Because tongue physique identification is a nine-level classification problem, the last lay-
ers of both VGG and ResNet are changed to be the fully connected layers with 1 x 1 x 9.
In addition, in order to obtain the better models, VGG, GoogLeNet, and ResNet are first
trained on the ILSVRC as an initialization and are then fine trained on our tongue physique
identification database. In order to observe the effectiveness of a training database of dif-
ferent sizes on our method, we divide the tongue physique identification database into five
parts by randomly selecting the number of samples of 20%, 40%, 60%, and 80% respec-
tively from each category in the training database so as to ensure that each selected training
database contains all categories.

The performance evaluation criteria are Top1 error and Top3 error. Top! error is the ratio
between the number of misclassified samples and the number of total samples. Top3 error
is the ratio between the number of the cases that the first three categories processed by our

Table 5 Training parameters for

tongue physique identification Parameters Values

method
Picture size 80640
Batch size 300
Optimization method Adam
Learning rate le—3
BETAI 0.9
BETA2 0.99
Maximum number of iterations 1000
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Table 6 Structural parameters

for VGG, GoogLeNet, and Structural parameters VGG GoogLeNet ResNet
ResNet
Layers 16 22 101
Convolution layers I3 21 100
Convolution kernel sizes 3 7135 7135
Number of parameters (million) 134 6 47
Batch normalization . - +

method are all wrong and the number of total cases. The reason for the evaluation of Top3 is
that each person’s physique may contain multiple categories rather than a single one. In our
approach, we simplify the physique identification task as a single label learning task. All
models are implemented using the Torch framework, the training parameters of which are
presented in Table 5. In the table, BETA1 and BETA2 are first order momentum attenuation
coefficient and second order momentum attenuation coefficient of the optimization algo-
rithm Adam. The maximum number of iterations is set to 1000 because the current tongue
physique identification database is not large enough. When 1000 iterations of training are
performed, the error is very small.

Table 6 illustrates the basic structural parameters of VGG, GooglLeNet, and ResNet
implemented in our experiments. The number of parameters of the VGG model is the high-
est and its model is the largest. The number of parameters of GoogLeNet is smaller, but the
number of layers is deeper than that of VGG. ResNet is the deepest one, having 101 layers
and a batch normalized layer. Its operation time is the longest among the three models. This
is one of the reasons we selected GoogLeNet for the proposed approach to tongue physique
identification.

The experimental results are shown in Table 7, where the error rates of VGG-16,
GooglLeNet, and ResNet-101 are presented. It can be seen that with increasing size of the
training database, the error rates of the three models decreased, indicating that the large
training database is very helpful to the accuracies of the models. On each training database,
compared to its former training database, the three models can reduce the error rate by
approximately 4%, indicating that the current training database is not large enough and that
more training samples should be prepared. Second, the GoogleNet model performs the
best one among the three models, exhibiting the lowest Top! error rate of 39.58% and a
Top3 error rate of 18.07%. VGG-16 exhibits similar results as GoogLeNet, but has more
parameters and requires more computing resources. To our surprise, the effectiveness of the
ResNet-101 is as not good as expected, considering it was the 2015 ILSVRC champion, and
we would assume that its effectiveness should be better than that of both GoogleNet and

Table 7 Identification results of three methods on TCM physique (error ratio%)

Training Testing VGG VGG GoogleNet GoogleNet ResNet ResNet
data data (Topl) (Top3) (Topl) (Top3) (Topl) (Top3)
3597 895 58.21 30.73 57.43 32.29 59.55 35.53
7194 1795 54.15 27.08 53.09 26.80 55.71 29.80
10794 2692 47.40 23.66 47.33 22.70 S141 26.19
14389 3594 4591 22.53 45.33 21.20 48.49 23.26
17990 4492 39.78 18.34 39.58 18.08 43.41 21.19
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Table 8 Confusion matrix of VGG on largest training database (N=17990)

TCM physique  Qixu  Yingxu  Yangxu  Tanshi  Shire  Qiyu  Xueyu  Tebin  Pinghe

Qixu 0.80 0.05 0.01 0.06 0.00 0.04 0.02 0.00 0.01
Yingxu 0.30 0.52 0.01 0.06 0.03 0.04 0.02 0.00 0.02
Yangxu 0.36 0.06 0.49 0.06 0.00 0.01 0.01 0.00 0.00
Tanshi 0.34 0.08 0.02 0.45 0.02 0.04 0.02 0.00 0.01
Shire 0.28 0.11 0.01 0.07 043 0.05 0.03 0.00 0.03
Qiyu 0.40 0.06 0.01 0.06 0.01 0.42 0.02 0.00 0.01
Xueyu 0.35 0.09 0.01 0.04 0.01 0.03 0.45 0.00 0.02
Tebin 0.33 0.10 0.00 0.05 0.05 0.05 0.00 0.29 0.14
Pinghe 0.13 0.10 0.00 0.02 0.02 0.00  0.00 0.00 0.73

VGG-16. The reason for the poor performance of ResNet-101 is that the tongue physique
identification database is not large enough, which is not conducive to learning residual
errors. Secondly, it is generally hard to find the optimal parameter values for the deep learn-
ing method. Although we have cost much time to seek them, we may fail to find the optimal
parameters. Finally ResNet101 model maybe do not fit our problem.

Tables 8, 9, and 10 present the confusion matrices of VGG, GoogLeNet, and ResNet,
respectively, from the tongue physique identification database. In the tables, the bold num-
bers in the diagonal are the accuracies. The other bold numbers are greater errors. It can
be seen that in the three models the best results are obtained on the “qixu” and “pinghe”
categories. ResNet obtains the highest recognition rate, up to 89%, on the “qixu” category,
whereas VGG obtains the highest recognition rate, up to 73%, on the “pinghe” category.
Second, for the three models the recognition rate of “tebin” is the lowest, because it has
much fewer samples in the training database. In practice, there are far too few people with
this kind of physique, so the training samples are difficult to collect. Third, the three models
easily misclassified some physique types as the “qixu” type. The reason is that the “qgixu”-
type training samples comprise up to one-third of the total number of samples. Finally, the
effectiveness of ResNet is not as good as GoogleNet and VGG, because it is more seriously

Table 9 Confusion matrix of GoogLeNet on largest training database (N=17990)

TCM physique  Qixu  Yingxu  Yangxu  Tanshi  Shire  Qiyu  Xueyu  Tebin  Pinghe

Qixu 0.81 0.05 0.01 0.04 0.01 0.05 0.00 0.00 0.02
Yingxu 0.34 0.50 0.01 0.05 0.04 0.05 0.00 0.00 0.02
Yangxu 0.35 0.10 0.49 0.02 0.01 0.03 0.00 0.00 0.01
Tanshi 0.38 0.09 0.00 0.44 0.02 0.05 0.01 0.00 0.02
Shire 0.31 0.11 0.01 0.04 0.46 0.05 0.01 0.00 0.01
Qiyu 0.39 0.05 0.00 0.04 0.04 0.46 0.00 0.00 0.01
Xueyu 0.35 0.06 0.01 0.04 0.01 0.06 0.41 0.01 0.04
Tebin 0.67 0.00 0.00 0.00 0.00 0.00  0.00 0.33 0.00
Pinghe 0.12 0.09 0.00 0.02 0.03 0.02 0.00 0.00 0.72
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Table 10 Confusion matrix of ResNet on largest training database (N=17990)

TCM physique  Qixu  Yingxu  Yangxu  Tanshi  Shire Qiyu  Xueyu  Tebin  Pinghe

Qixu 0.89 0.05 0.01 0.01 0.02 0.01 0.00 0.00 0.02
Yingxu 0.45 0.44 0.02 0.01 0.03 0.01 0.00 0.00 0.03
Yangxu 0.45 0.06 0.44 0.01 0.02 0.00 0.01 0.00 0.01
Tanshi 0.58 0.07 0.02 0.26 0.04 0.00 0.00 0.00 0.02
Shire 0.43 0.10 0.01 0.02 0.40 0.02 0.00 0.00 0.03
Qiyu 0.59 0.09 0.01 0.02 0.03 0.25 0.00 0.00 0.01
Xueyu 0.58 0.03 0.02 0.01 0.04 0.01 0.31 0.00 0.01
Tebin 0.44 0.06 0.00 0.00 0.17 0.00 0.06 0.28 0.00
Pinghe 0.18 0.08 0.01 0.01 0.04 0.01 0.00 0.00 0.68

influenced by the “qixu” type than the other two models. This illustrates that if the interfer-
ence of the “gixu” type can be mitigated or eliminated, the effectiveness of the model can
be greatly improved.

5 Conclusions and future work

This paper proposes a new method to identify TCM physiques through natural tongue
images using hybrid deep learning methods. It has several significant advantages. First, it
can perfectly perform tongue coating detection on the tongue images captured in a natural
environment instead of in a controlled one. Second, it applies deep learning methods to rec-
ognize the physique on the detected tongue coating image with good performance. Finally,
it performs tongue physique identification quickly, within 1 min, while most systems, such
as those based on a questionnaire, perform the same task in up to 30 min. These three advan-
tages make it applicable to many practical fields. In the future, the training database should
be enlarged as much as possible, since deep learning methods can obtain better results on
larger training databases. Our planned follow-up work is multi-label learning for tongue
physique identification; since each person’s physique is complex, an individual may contain
several physique types simultaneously.
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Abstract Traditional Chinese Medicine (TCM) illustrates that the physique determines the
susceptibility of human to certain diseases and treatment programs for illness. Tongue diag-
nosis is an important way to identify the physique, but now it is performed by the doctor’s
professional experience and the design of a questionnaire. Consequently, accurate physique
identification cannot be obtained easily. In this paper, we propose a new method to identify
the physique through wild tongue images using hybrid deep learning methods. It begins with
constructing a large number of tongue images that are taken in natural conditions, instead of
in a controlled environment. Based on the resulting database, a new method of tongue coat-
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Abstract. Sparse representation-based visual tracking methods do not adapt
well to changes in the target and backgrounds, and the sparseness of samples
does not guarantee optimality. In this paper, we propose a robust visual tracking
algorithm using sparse multi-feature selection and adaptive dictionary update
based on weight dictionaries. We exploit the color features and texture features
of the learning samples to obtain different discriminative dictionaries based on
the label consistent K-SVD algorithm, and use the position information of those
samples to assign weights to the dictionaries’ base vectors, forming the weight
dictionaries. For robust visual tracking, we adopt a novel feature selection
strategy that combines the weights of dictionaries’ base vectors and recon-
struction errors to select the best sample. In addition, we introduce adaptive
noise energy thresholds and establish a dictionary updating mechanism based on
noise energy analysis, which effectively reduces the error accumulation caused
by dictionary updating and enhances the adaptability to target and background
changes. Comparison experiments show that the proposed algorithm performs
favorably against several state-of-the-art methods.

Keywords: Visual tracking - Similarity weights - Sparse representation
Adaptive update - Multi-feature selection

1 Introduction

Visual tracking is an important problem of computer vision. In the past few years, we
have witnessed rapid advancements in visual tracking, but it is still a challenging task
due to complex situations, such as occlusions, target deformation, rotation, scale
changes and cluttered background. Most of existing methods can be roughly divided
into generative methods [1-4] and discriminative methods [5-9]. The generative
methods describe the appearance characteristics of the target and search for candidate
targets by minimizing the reconstruction error. Based on classifiers, the discriminative
methods mainly find the decision boundaries of the target and the background.

© Springer Nature Switzerland AG 2018
J. Ren et al. (Eds.): BICS 2018, LNAI 10989, pp. 484494, 2018.
https://doi.org/10.1007/978-3-030-00563-4_47
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In recent years, there have been many target tracking algorithms based on sparse
representation [1-3], correlation filters (CF) [10-13] and deep learning [14—17], where
deep learning and correlation filters are research hotspots now. The main advantage of
deep learning-based tracking methods lies in their powerful characterization of depth
features. SO-DLT [16] and MDnet [17] use non-task video datasets for pre-training,
and then adjust the tracking model to make the model adapt to the current tracking task.
However, these methods are computationally intensive and depend strongly on pre-
trained samples. CF-based tracking methods show strong computational efficiency and
tracking robustness. Heriques et al. [10] proposed an efficient tracking method based on
HOG features using cyclic transform and kernel transform. Danelljan et al. [11, 12]
later used multi-scale models to solve the problem of target scale change. The corre-
lation filters have a great advantage in tracking efficiency. However, the tracking effect
is easily affected by the boundary effect, and the target background information cannot
be fully utilized.

Sparse representation-based tracking methods [1-3] select the target location by
comparing the reconstruction errors of the features. Because of insensitivity to the
target noise, this kind of method has a strong tracking robustness when target defor-
mation occurs. Based on the Label Consistent K-SVD (LC-KSVD) method [18], the
work [19] used the positive and negative samples together to train a discriminative
sparse dictionary, making the model have stronger discriminative performance during
the tracking process. However, fixed discriminative dictionary ignores the variations
cues between foreground and background. Also, it used single-feature which lacks of
considering color distribution of target.

The main innovations of our method are as follows:

e Sparse Multi-feature Selection. According to the center distance from the learning
sample to the target, we assign Gaussian weights to the basis vectors of different
feature dictionaries. We use the multi-feature weight of the samples to measure the
similarity between the samples and the target to obtain candidate samples, and then
to select the best sample by synthesizing the multiple features reconstruction error
of them. The complementary effect between the various features improves the
stability of the tracking.

e Adaptive Weight Dictionary Update. We analyze the changes of the average
noise energy during tracking. In order to select the best update time for the dic-
tionary, we use the quantile threshold of all previous average noise energies to
determine the anomalous changes in the tracking scene.

2 Proposed Approach

The overall framework of our approach is shown in Fig. 1. It can be divided into two
parts in general. (1) Update-related. In frame t, we set a threshold for the noise energy
of the tracking results based on all previous tracking results, combined with the target
noise and samples average noise to determine whether the update conditions are sat-
isfied. The updated dictionary is learned from the positive and negative samples of
frame ¢ and the positive sample of frame 1, and used for the tracking detection of the
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next frame. (2) Selection-related. In frame t + 1, we perform sparse coding on samples
obtained from Gaussian sampling using the latest weight dictionary, and then compare
sample similarity weights and reconstruction errors to select the best sample.
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Fig. 1. The tracking flowchart of the proposed approach.

2.1 Weight Dictionary Model

Discriminative Dictionary Composition. In this paper, we use three types of tem-
plates (the target template 7, the background template B and the noise template /) to
collectively represent the target appearance. In the process of template sampling in first
frame, all pixels in the range of radius r, are sampled to obtain the positive samples.
And then dense sampling is performed in the range of radius between r; and r; to
obtain negative samples. If the dimension of a sample feature is m, then the target
templates and the background templates define as:

T = {F,ld(l) S}"{)}mx’u, B = {F,‘l?’] <d(£) < rg}quj (1)

where F; represents the sample 7, d(i) is the center distance from sample F; to the target,
i is the label of the samples, p and ¢ are the number of positive samples and negative
samples. The three radiuses in Eq. (1) satisfy the relationship: 0 <rp <r; <nr.

The sparse discriminative dictionary D learned from all samples consists of three parts:
D = [D", DB, D'], then D", D? and D' respectively corresponding to template T, B and
1. In the tracking process, the sparse representation formula for the feature y is:

<
y~Dy= [D",D?, D']|v]|, (2)
e

where D is a discriminative dictionary, z is target coefficients, v is background coef-
ficients, e is noise coefficient, and 7y is sparse coding.

Weight Dictionary Learning. In this paper, the LC-KSVD [18] method is used to
unify dictionary learning and classification labeling. The solution to Eq. (2) can be
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transformed into solving four local dictionaries respectively. The solution process is
expressed as follows:

arg gi/inHY — D}-’”% +BlIG - A?“% + AlI7[l;- (3)

Matrix G is the discriminative sparse coding of the initial template classification, so
that 7 approximates the sparse coding of the initial label, and the transfer matrix
A makes 7 in the sparse feature space has stronger discriminant ability of samples
category. ff is a range control coefficient that is consistent with the regular term con-
tribution in Formula (3). According to the samples category of the target template 7, the
background template B and the noise template /, matrix G is defined as follows:

G — {%l go’)]’gl E RV g € Rla+m)x(q+ m)’ (4)

where g; and g, are all-one-element matrices. In order to obtain the optimal solution of
Formula (3), we can solve the following expression:

; 2 3
arg f?ﬂnﬂ H Yuew == Dn{*u"yllz g "“”'J)H 12 (5)

Hnew's J

where Y., = (YT, \/BGT)T. Diysiv = (J'_)T1 \/ﬁAT)T. Formula (5) can be solved using
the K-SVD algorithm. The learning process of the dictionary D,,, will generate a
sparse coding value 7, and we can obtain the dictionary D.

When we have got the sparse dictionary, we assign weights to each base vector of
the dictionary, according to the center distance from the samples to the target. We use
the Gaussian function centered on the target as the weight function, and the weight of
the dictionary’s base vector is only related to the center distance d(i). The weight of the
base vector is defined as follows:

W(i) = exp(—d®(i)/20%), (6)

where ¢ is the standard deviation of normal distribution. This weight reflects the
similarity between the target and the samples. Finally, we can get a discriminative
dictionary with a weight table, namely the weight dictionary, as shown in Fig. 2.

N feature Sy s peun i T
O

Negative D
samples
_______ 4 pasition st i...
J Weight table
—~—

Fig. 2. Initial dictionary learning and weight assignment of the dictionary’s base vectors

]
I
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2.2 Multi-feature Selection Strategy

In the frame #, we perform Gaussian sampling centered on the target position of the
previous frame to obtain samples S; (i = 1, 2, ..., n). Using two feature dictionaries Dy,
(k = 1, 2) to perform sparse decomposition on all samples, we can get sparse coeffi-
cients 7}, where £ is a feature tag (k = 1 denotes color histogram, k = 2 denotes Haar-
like features [20]) and i is the sample index.

In the sparse coefficients 7%, all coefficient values reflect the correlation strength
between the sample feature and the dictionary’s base vector. A base vector (sparse
feature) corresponding to the maximum value has the strongest correlation with the
sample. In the tracking process, we combine the weights of two features to get the
synthetic weights W'. Its definition is as follows:

W = 1:[ Wi, (7)

where W] represents the k-feature weight of sample s;. The candidate samples CS; are
the samples with the largest feature synthetic weight among all samples.

Then we use the synthetic reconstruction error to select the best sample from
candidate samples. The expression of the synthetic reconstruction error is as follows:

R =R (8)
k

where Ri represents the reconstruction error of the sample s; in k-feature, j is the label
of the candidate samples. Finally, in the candidate samples, the sample label of the best
tracking result can be expressed as follows:

}’ = arg min; R. 9)

The multi-feature selection process is shown in Fig. 3.

fame=t  Haar-like

-; candidate |
;. samples |

. -
Color

all sél:ﬁf)les best sample

Fig. 3. Multi-feature selection process

2.3 Adaptive Dictionary Update

In the sparse coefficient ¢, the maximum sparse coefficient represents most information
of the sample and the noise factor e (see Eq. (2)) is much smaller than the maximum
coefficient. Noise coefficient e can reflect the situation of target occlusion and tracking
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drift to some extent. We should not update the dictionary for these two situations. Our
method analyzes the noise energy u (the sum of the noise coefficients e) to determine
the time of the dictionary update.

In frame ¢, the average noise energy expression for all samples in the current frame

is E = ", u, where uéjs the noise energy of sample s;. The threshold x; is the upper
quantile of set Uy (all “Z from frame 1 to frame 7). The threshold is defined as:

P{Ui > x} = (10)

We only perform the weight dictionary update when the following three conditions
are met. (1) The noise energy of the current best sample is less than the average noise
energy of all samples; (2) The average noise energy change curve intersects the
threshold curve at the last two frames; (3) The interval time between two updates must
be more than #m. The update result is shown in Fig. 4.

Background change

Fig. 4. Update time and corresponding scene

The learning process of the new dictionary is shown in Fig. 1. We sample the
positive and negative samples in the current frame and form a new training dataset with
the positive samples of the first frame. We use this new training dataset to learn a new
dictionary based on LC-KSVD method [19] and replace the old one.

3 Experimental Results and Comparison

3.1 Experimental Settings

In this paper, 14 representative video sequences in the OTB100 datasets [21] are
selected as the evaluation test set of the algorithm. These standard test videos are:
basketball, Panda, Skater, Shaking, jumping, football, BlurFace, BlurOwl, couple,
Man, jogging-1, david3, david2, carDark. These video clips cover a variety of chal-
lenging attributes, including target occlusion, target deformation, illumination changes,
target rotation, background interference. In the comparative experiment, we not only
selected 8 tracking models related to our method (ASLA [1], IVT [2], L1APG [3], CT
[5], CXT [6], ORIA [8], OAB [7], TLD [9]), but also selected 9 excellent methods
(DCF [10], KCF [10], DSST [11], SRDCF [12], LMCF [13], SiamFC [14], ACFN
[15], SAMF [22], STAPLE [23]) in recent years including methods based on CF and
deep-learning.
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We use the open code and default parameters of these methods to experiment in the
same computer environment. The computer environment used in the experiment is:
Intel (R) Core (TM) 13-3.7 GHz, RAM-12 GB, matlabR2017a.

The method of this paper adopts uniform parameter settings. The number of
Gaussian samples in the tracking process is 500 and the sampling radius is 25. The
sampling parameter of the training sample is set to: ro = 4, ry = 7, r, = 15. The Haar-
like [20] feature dimension is set to 150, and the bin of the color statistics histogram is
set to 32. So the color-feature dimension of the single-channel image is 32, and the
RGB image is 96. Update time interval is #m = 6 frames, and noise energy threshold
parameter is o = 0.2.

3.2 Experimental Results and Analysis

We use the average center error and the average overlap score [21] as evaluation
criteria for comparative experiments. The center error is the Euclidean distance
between the tracking result and the standard target position. The overlap rate is a
measure of the overlap range of the tracking result and the standard result tracking box.
The calculation formula is defined as: score = ersectionarea The ayerage center error

union area

and overlap rate for our method and the related methods are shown in Tables 1 and 2.

Table 1. The average overlap rate of the related methods and our method on 14 different videos
(bold indicates the best two methods). DSST and KCF were added as evaluation baseline.

Video  |Ours | DSST|KCF |ASLA|IVT |OAB |TLD |LIAPG |ORIA|CT |CXT
Basketball | 0.715 | 0.606 | 0.676 | 0.277 |0.123 |0.026 | 0.310 | 0.202 | 0.065 | 0.212|0.019
Panda | 0.512 0.142 0.159 0.518 0.138 0.152 0.539 0.285 | 0.109 0489 0.182
Skater | 0.632 0.629 0.611|0.548 0.551 0.532 0.542 0567 | 0.597 |0.597 0.426
Shaking | 0.668 | 0.706 0.040 0.427 |0.034 0.034 0.101 0276 |0.468 0.171]0.308
Jumping | 0.652 0.070 0275 0.086 |0.1220.059  0.646 0.105 |0.082 |0.031 0.773
Football | 0.628 | 0.560 | 0.5520.590 |0.560 0.529 0542 0.462 |0.512 | 0.403]0.538
BlurFace |0.772 0.841 0.796 0218 |0.158 0.481 0.864 0.450 | 0.176 0.221 0.835
BlurOwl |0.743 0.190 0.1950.194 |0.055 0.768 0.610 0.253 | 0.069  0.067 0.312
Couple | 0.5940.092  0.201[0.100 | 0.074 | 0.420 0.188 0471 |0.047 0.297 0.467
Man 0.878 0.883 | 0.8310.836 |0.745 0.859 0.793 0.874 |0.848  0.0740.873
Jogging-1 | 0.701 | 0.187 |0.186|0.186 | 0.177 | 0.612 0.767 0.184 |0.223 |0.160  0.766
David3 | 0.657 0.458 0.772[0314 |0.5120.286 0.276 0.292 | 0.132 | 0.400 0.122
David2 | 0.698 0.830 0.828 0.899 0702 0.754 0.782 0.839 | 0.468 0.003 | 0.854
carDark | 0.587  0.845 0.6150.854 | 0.663 0.767 0.446 0.852 |0.419 | 0.007 0.540

In Tables 1 and 2, we can see that our method show favorably performance in
comparison with the methods based on dense sampling or sparse representation.
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Table 2. The average center error of the related methods and our method on 14 different videos
(bold indicates the best two methods). DSST and KCF were added as evaluation baseline.

Video Ours DSST | KCF |ASLA IVT |OAB |TLD LIAPG ORIA CT |CXT
Basketball 6.9 | 10.9 | 7.9 712 8151609 6521119 1107 1129|1883
Panda | 6.8  43.6| 421 69 | 512/1432] 59| 269 | 699 69 814
Skater | 88| 84| 107 75| 85 207| 113] 161 | 117 | 11.8] 405
Shaking | 10.6 | 84 1125| 27.0 @ 87.2[1553 685 37.9 | 244 6501221
Jumping | 62| 369  26.1 495 | 61.6| 69.6| 7.6 576 @ 577 520 35
Football | 9.0 158 | 146 150 | 139 158] 143 413 | 132 193] 143
BlurFace | 10.9 | 52| 84|117.2 1489| 536 38| 628 | 756 1099 65
BlurOwl | 8.9 196.1 |183.4| 64.6 1672 11.8| 30.3/120.6 1794 1647 6.9
Couple | 8.9 1256 | 47.6) 939 1094 265 643 284 | 988 293| 492
Man | 18| 16| 23| 13| 34| 23| 31| 14 | 19| 458] 21
Jogging-1 | 691107 | 8831040 | 883| 137, 72| 833 | 452 918 56
David3 | 12.0 882 | 4.3 1046 530 91.1/1357| 860 1826 685 2218
Davidi2 | 48| 20| 21| 15| 12| 35| 26| 15 | 195 782 13
caDark | 7.6 15| 60| 14| 84| 35| 269 12 | 259 118.7| 186

In order to objectively evaluate our approach, we also use the tracking precision
and success rate [21] under different thresholds to compare our method with 17 dif-
ferent methods (ASLA [1], IVT [2], LIAPG [3], CT [5], CXT [6], ORIA [8], OAB [7],
TLD [9], DCF [10], KCF [10], DSST [11], SRDCF [12], LMCF [13], SiamFC [14],
ACEN [15], SAMF [22], STAPLE [23]). The overall tracking accuracy and success
rate for all test videos is shown in Fig. 5. In comparison with some advanced methods
in recent years, our method also shows excellent tracking performance.

Precision plots of OPE ’ Success plots of OPE

Success rale

] % . . 11 o e
Location ermor threshold Overap threshold

Fig. 5. Precision and success plots of overall performance comparison for 14 videos

The tracking performance evaluation of different video attributes is showed in
Fig. 6. Our tracking performance is second (only below SiamFC) on attribute defor-
mation, rotation and scale variation, and we achieve the best performance on attribute
background clutter (see Fig. 6).
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Fig. 6. Attribute based evaluation. Success plots compare our tracker with other 17 trackers on
all test videos. Our tracker has favorably tracking effects in most attributes.

The color features have properties that are insensitive to the deformation of the
target. The use of color feature dictionary greatly enhances the tracking effect of our
tracking model when the target is blurred. In comparison with the related methods, our
tracker has the best tracking effect on attribute motion blur and fast motion (see Fig. 6).
The tracking results in videos BlurOwl, jumping and couple are shown in Fig. 7.

Fig. 7. Tracking results of 6 related methods and our method in videos BlurOwl, jumping and
couple

From the comparison of these results we can see that the tracking effect of our
method has reached the level of some state-of-the-art methods (e.g. LMCF, ACFN and
SRDCEF).

4 Conclusion

This paper proposes a novel weight dictionary model with multi-feature selection and
adaptive dictionary learning to represent the appearance of the target, and noise energy
analysis and sample similarity weights are introduced to improve the performance of
sparse feature selection. Using different features can complement the feature repre-
sentation capabilities of the target and reduce background noise interference to increase
tracking accuracy. The sample similarity weight is used to narrow the search range of
the optimal sample to select candidate samples, which can effectively reduce the
interference of abnormal samples. A new updating algorithm has been proposed via
noise energy analysis which compares the noise energy with the dynamic threshold.
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Experimental results on the OTB100 dataset show the effectiveness of the proposed
method. In the future, we will further solve the issue of scale change, improve our
algorithm by investigating more sophisticated sparse representation-based methods
[24], and extend our method to multi-camera target tracking application scenarios [25].
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Abstract. Sparse representation-based visual tracking methods do not adapt
well to changes in the target and backgrounds, and the sparseness of samples
does not guarantee optimality. In this paper. we propose a robust visual tracking
algorithm using sparse multi-feature selection and adaptive dictionary update
based on weight dictionaries. We exploit the color features and texture features
of the learning samples to obtain different discniminative dictionaries based on
the label consistent K-SVD algorithm, and use the position information of those
samples to assign weights 1o the dictionanies™ base vectors, forming the weight
dictionaries. For robust visual tracking, we adopt a novel feature selection
strategy that combines the weights of dictionaries’ base vectors and recon-
struction errors 10 select the best sample. In addition, we mtroduce adaptive
noise energy thresholds and establish a dictionary updating mechanism based on
noise energy analysis, which effectively reduces the error accumulation caused
by dictionary updating and enhances the adaptability to target and background
changes. Comparison experiments show that the proposed algorithm performs
favorably against several state-of-the-art methods.

Keywords: Visual tracking < Simulanity weights - Sparse representation
Adaptive update + Multi-feature selection
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Abstract

Visual object tracking is to locate an object of interest in a sequence of consecutive video frames, which is widely applied
in many high-level computer vision tasks such as intelligent video surveillance and robotics. It is of great challenges for
visual tracking methods to handle large target appearance variations caused by pose deformation, fast motion, occlusion,
and surrounding environments in real-time videos. In this paper, inspired by human attention cognitive saliency model,
we propose a visual tracking method based on salient superpixels which integrates the target appearance similarity and
cognitive saliency, and helps to location inference and appearance model updating. The saliency of superpixel is detected
by graph model and manifold ranking. We cluster the superpixels of the first four target boxes into a set corresponding
to object foreground and model the target appearance with color descriptors. While tracking, the relevance is computed
between the candidate superpixels and the target appearance set. We also propose an iterative threshold segmentation method
to distinguish the foreground and background of superpixels based on saliency and relevance. To increase the accuracy
of location inference, we explore particle filter in both confidence estimation and sampling procedures. We compared our
method with the existing techniques in OTB100 dataset in terms of precision based on center location error and success rate
based on overlap, and the experimental results show that our proposed method achieved substantially better performance.
Promising results have shown that the proposed salient superpixel-based approach is effective to deformation, occlusion,
and other challenges in object tracking.

Keywords Visual tracking - Superpixel - Saliency detection - Correlation matrix - Graph model

Introduction task when the tracking object undergoes great pose

variations and heavy occlusions in complex scenes. The

In recent years, visual tracking methods based on different
theoretical frameworks are applied in many high-level
visual tasks, such as pedestrian detection [5], visual
surveillance [12, 48] and human perception in intelligent
environment [31]. Although great progress has been
made in tracking accuracy, it is still a challenging
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existing tracking methods mainly deal with the target
representation, matching and location by target features in
the tracking process. For example, tracking-by-detection
methods [7, 9-11, 18] use target texture or other high-
level features, build classifiers to distinguish the target
and the background. Li et al. [7] fused the color,
texture, edge features to get a weighted multi-feature,
combined with spatio-context correlation to update feature
weights adaptively by information entropy, and greatly
enhanced the adaptability to environment variations. These
kinds of tracking methods typically depend on bounding
boxes for target representations. To better preserve target
appearance details, tracking-by-segmentation methods have
been proposed [3, 6, 8, 27, 30, 35]. In 2011, Wang et al. [3]
proposed superpixel-based tracking method to establish an
effective target appearance model, and trained a Bayesian
classifier by using Meanshift clustering. Then, Yang et al.
[27] incorporated particle filtering in superpixel tracking,
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and proposed occlusion detection mechanism in classifier
updating. Both methods achieve high accuracy but the
tracking speed is slow because of the large number of
clustering operations. To make better use of superpixels,
Yeo et al. [8] used a graph for Absorbing Markov Chain
(AMC) to treat superpixels as graph nodes and edges are
encoded by similarity of scores. Wang et al. [35] also
proposed a constrained graph labeling algorithm for visual
tracking. The edges of graph are encoded by the underlying
spatial, temporal and appearance fitness constraints. They
both facilitate more accurate online update when a target
involves substantial non-rigid or articulated motions.

Because real-time performance is one of the indicators
of visual tracking performance, hence the Correlation
Filtering (CF)-based tracking methods [19., 20, 45-47]
have become one of the research hotshots in recent years
due to its simplicity and strong computational efficiency.
Danelljan et al. [46] used spatial regularization function
that penalizes filter coefficients residing outside the target
region to solve the boundary effect. Lukezic et al. [47]
utilized channel and space reliability to set the weights
for different feature channels and update the filters with
space constraints. However, conventional CF-based trackers
fail to handle the scale variation that occurs when the
target object is moving, so Ding et al. [19] proposed
a scalable visual tracking algorithm based on kernelized
correlation filters (QKCF), which can estimate the scale
of the object based on the positions of its four corners by
a new Gaussian training output matrix. Zhang et al. [20]
proposed a latent constrained correlation filters (LCCF) by
mapping the correlation filters to a given latent subspace,
and then developed a new learning framework that embeds
distribution-related constraints in the latent subspace. These
methods have achieved good performance in resolving
target scales.

Visual tracking task mainly solves the continuous
attention to sequential moving objects, but many tracking
methods focus on traditional statistical learning and
machine learning, and ignore the fact that human visual
system greatly exceeds these methods. Most tracking
models are not discriminative and adaptive enough in
dealing with complex and harsh environments. Therefore,
how to develop tracking methods from the perspective of
visual cognition has become an urgent and challenging
task. The mechanism of human biological vision is not
very clear, but the related theory of visual computing has
carried out a lot of research since the 1990s. The visual
attention cognitive computing model is a computer-based
mathematical model of human visual cognitive mechanism
to obtain efficient and robust visual processing results.
It has been widely used in various types of tasks in the
past two years, such as natural language processing, image
classification [43]. Among them, saliency detection is a
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kind of fundamental cognitive capability by simulating
human visual attention mechanism. Since the 1990s, experts
in cognitive psychology, neurophysiology. and computer
vision have carried out extensive and in-depth research on
saliency. Considering the development process of saliency
and the ultimate application direction, it can be divided
into two categories: visual focus prediction [40] and salient
target detection [42]. The former tends to capture the most
attractive key points in the image, while the latter pursues
the integrity and uniformity of the whole target.

Most salient target detection methods use the local
or global contrast of low-level features such as color,
gradient, edge, and texture within a local context or the
entire image. Chen et al. [41] proposed a classical regional
contrast saliency method, which divides the image into
several regions by color sparse histogram and graph-based
segmentation method. The combination of visual attention
model and depth network has become more and more
popular. Mnih V et al. [44] regarded attention problem as
a series of goal-based decision-making processes of agent
interacting with visual environment, and proposed an end-
to-end optimization process of back propagation for training
neural networks. Wang et al. [25] proposed a deep learning
based hybrid spatiotemporal saliency feature extraction
framework for saliency detection from video footage.

To reduce the computational complexity of saliency
contrast at the pixel level, superpixels have been used
to represent objects of interest at the district-level in
fundamental applications, such as object recognition [4,
21], human posture estimation [22, 23, 28], visual tracking
[32, 33] and saliency detection [1, 25]. Yang et al. [I]
proposed a classified saliency detection based superpixels,
which represent the image as a close-loop graph with
superpixels as nodes, and rank the similarity of the image
elements via graph-based manifold ranking. Yan et al.
[24] proposed a Gestalt law—guided saliency detection via
characterizing HVS and forming objects, and smoothed at
superpixel and object levels by fusing bottom-up and top-
down mechanisms. Gao et al. [14-17] proposed a new
bottom-up full-resolution saliency maps for river detection
in high-resolution SAR images. The superpixels at the
same layers are merged by feature-based distance, then
the final full-resolution saliency map is generated by
fusion algorithm via tree structured graphical modeling.
This shows that saliency detection can provide cognitive
guidance in complex computer vision tasks and achieve
relatively good detection results. The methods of using
deep network to improve saliency have also attracted more
and more attention, including solving unsupervised saliency
labeling [13] and adaptively fusing feature maps of different
depth network levels [29].

Inspired by the achievements in cognitive computation
and visual saliency, in this paper, we propose a tracking
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method that combines the saliency and relevance of
superpixels, and obtains the rough range of the target’s
foreground by iterative segmentation method. In summary,
this work has the following contributions. Firstly, we
incorporate cognitive saliency detection based on graph
model into superpixel-based tracking, which is conducive to
find the target area roughly at the search scope of frames.
Secondly, we use relevance to measure the relationship
between each superpixel and the target, and fuse the
relevance and saliency values of each superpixel to obtain
confidence. Finally, we exploit particle filter sampling and
select the sample with the maximum sum of confidence as
the best tracking result.

The paper is organized as follows. We introduce the
research background and review the related work in the
“Introduction” section. Afterwards, the “Proposed Method”
section describes the proposed method in detail, includ-
ing target appearance model initialization, salient super-
pixel detection, iterative segmentation method, and target
locating. The experiments are given in the “Experimental
Results™ section. We conclude the paper and discuss future
work in the “Conclusion and Future Work™ section.

Proposed Method

We will describe the details of the proposed method in
this section. Our tracking method fuses the saliency and
relevance detection for superpixels to obtain the rough target
foreground. Then, we use an iterative segmentation method

Initialize Target Appearance
: Superpixel
and Saliency

Target
Appearance Set

Updating Target Appearance Set

with threshold setting to segment the foreground more
accurately. The final optimal target is located in particle
filter framework. Figure 1 shows the process of the proposed
method. The initial target appearance set is constructed
by target foreground superpixel from the first four frames
by using Lab color histogram features. In the search box
of subsequent frames, superpixels are segmented by SLIC
algorithm [2] and their saliency are detected by graph-
based manifold ranking method [1]. Then, we calculate the
relevance matrix between these superpixles and the initial
target appearance set. The relevance and the saliency of
each superpixel are fused to find the foreground of target
by iterative segmentation method. We also update the target
appearance set according to updating threshold.

Appearance Model Initialization

Before tracking, we construct a set of target appearance
from the first four frames for initialization. For the purpose,
first of all, we find out the target in the first four frames with
a simple tracking result box. Considering the compactness
and efficiency of superpixel segmentation, this paper uses a
simple linear iterative clustering algorithm (SLIC) proposed
by Achanta et al. [2] to segment image frames into several
superpixel blocks that preserve color, spatial information
and boundary characteristics. The SLIC method calculates
the color distance and Euclidean distance between each
pixel and the superpixel center (seed point) in the image,
and takes their linear combination as total similarity. The

Frame t

Fig. 1 Flowchart of the proposed method. The initial target appear-
ance set is constructed by the salient superpixels in the first four
frames. At frame ¢, the relevance of superpixels are calculated between
the foreground appearance set, and the motion model predicted by
saliency detection to suggest potential centers. To further estimate the

Correlation

Particle
Filter
Sampling

Iterative
Segmentation |

Matrix

Confidence

Saliency

object state, we use the iterative segmentation algorithm after fusing
the value of relevance and saliency, and assign confidence map for
each superpixels. The final optimal target is located in particle filter
framework
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image is clustered step by step within the range of two
times the distance between the seeds. Because this method
does not consider the distant pixels, it not only reduces the
calculation time but also makes the size of the superpixels
more regular and compact, and each superpixel can maintain
the image boundary.

In frame #, we deseribe the set of superpixels is P =
{s] ;.V=l, where N is the number of superpixels in current
[rame, ¢ is the subscript of image frame. Each superpixel
is described as parameter set s{ = (xf, ¥, f7,0].80. 1),
where xf and yf is the Cartesian coordinates of the center
of the superpixel, f/ is the feature descriptor, 8/ indicates
whether it is at the image boundary (9{.‘ = 1 means at the
boundary, otherwise, 6] = 0), 8] is the flag of foreground or
background (3 = 1 means foreground, otherwise, 8/ =0},
f{ is the superpixel label.

The first four tracking boxes contain a small amount of
background information besides the tracked target, and the
superpixels of the target foreground and background are
not overlapped. Then, we use saliency detection algorithm
[1] to find the significant motion of superpixels, which
have the greatest sinilarity of target foreground among four
frames. By setting an adaptive threshold, the foreground
and background superpixels can be separated. Although this
threshold may remove the parts belonging to the target, it
cnsures that the foreground superpixels must be the target
part.

We put the foreground superpixels of the four frames
into a set o form the initial targel appearance set H =
{h:f|5f =1,¢ € [1, 4]};.11, which is used to calculate the
relevance coefficient matrix to estimating the object state
and be updated dynamically in the tracking process. Hers,
M is the total number of foreground superpixels in the
first four frames. Considering that the color distribution of
target is relatively stable and is almost unchanged except
acclusions in the video sequences, hence, we use the Lab
color histogram to represent the feature of superpixels.

Salient Superpixel Detection by Graph Construction

In the graph model-based saliency detection method,
superpixels are nodes of graph, and the distance between
adjacent superpixels (such as gemetric distance or color
distance) is the weight of the edge in the graph. Based on the
graph-based manifold sorting algorithm [1], we calculate
the saliency for each superpixel in frame.

Before calculating saliency based on graph meodel, the
superpixels are divided inlo two subsets: some vertices
are defined for query point; the remaining vertices are
ranked according to their relevance with the query points.
A graph is defined as G = (V. E), where the graph
vertices V' correspond o superpixels. In the frame ¢, given
the superpixel set P C RN, where d is the feature
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dimension and N is the number of superpixels. Let f
P —» RY denotes a ranking function which assigns a
ranking value to each superpixel, and f can be viewed as
avecor f = [f1,.... fv]'. The cdges E are weighted
by an affinity matrix W = [w;;]¥*V. Given G, the degree
matrix is D = diag{d,....dn}, where &y = Z}- wyj,
and the relationship matrix W is a sparse matrix becanse of
the structural relationship of vertices, adjacent vertices and
vertices with shared border. The optimal rankings of queries
f* is computed by solving the following eptimization
problem:

N . N
o1 fi Fi 2 2
Sr=argmin S will = — =P+ u ) 01— wl
72 i j=1 di iy i=1
(1

where the parameter u controls the balance of the
smoothness constraint and the fitting constraint, ¥ =
[¥1..00 yN]T denotes an indication vector, in which y; =
1 if 5; is a query point, and y; = 0 otherwise. Set the
derivative of the above function to be zero, the resulted

ranking function can be written as:

* —1 1
=D —sw) Y'S_l—l-u, (2)

The weight of each edge is given by the similarity of
the relevance with vertices. Considering that the superpixels
with the same color and the same spatially connected
area will have more consistent ranking fits with the target
appearance, and more uniformly highlight the whole target.
Therefore, we learn the edge weights by maximizing the
scores between superpixels in target foreground with color
distance und geometric distance. Let | ¢; —c; | and || p; — p; ||
are Lab color distance and Euclidean distance of the i-th
and j-th superpixels, respectively, wy; is computed by the
following formula:

leg—eg 1L - eyl
wij = P S S 3)
where A is coefficient of balance and set to be 0.5 in the
experiments, and o is set to be 10.

In wacking problem, target is given in the bounding box
at the first frame. The superpixels in bounding box contain
target toreground and a small amount of background that
do not overlap with the foreground. The center superpixel
is the most important foreground location, so the spatial
relationship information around with the center superpixel
is an important cue for saliency detection. Based on this
consideration, we exploit two-stage scheme for saliency
detection in which the superpixels located at the boundary
and the center are used as query points respectively to
compute the ranking function.

In the first stage, four saliency maps are constructed
using boundary priors and then integrated as the final map.
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Taking top image boundary as an example, the superpixels
on this side are the queries, and other superpixels are the
unlabeled data. According to the ranking scores of Eq. (2),
the saliency of the i-th superpixel in the graph relative to top
image boundary is calculated by S;(i) = 1 — 7'(:‘), where
T'(i) is the ranking score normalized to [0,1]. In the same
way, we can get the saliency of the i-th superpixel relative
to the bottom, left, and right boundary queries, denoted
Sp(i), Si(i), Sr(i). Then, the saliency of the i-th superpixel
in the first stage is:

S1(i) = 8 (i) x Sp(i) x §;(i) x S,(i) 4

The second stage is to improve the saliency map via
ranking with foreground queries, for some background
superpixels may not be adequately suppressed. We select
the superpixel containing the target center of the previous
frame as the new query point. The new ranking vector?‘(f}
is calculated by Eq. (2) and normalized to [0,1], then the
saliency of the i-th superpixel in the second stage is:

Sa(i) = f7 (i) (5)

The final saliency of superpixels are obtained by multiply-
ing and normalizing the saliency obtained in the first stage
and the second stage. The superpixels with high saliency
value can provide sufficient cues to identify the interesting
target and give the rough range of target motion, we call
them salient superpixels.

Iterative Segmentation Method

In order to further distinguish whether the superpixel
belongs to the foreground or background, we calculate the
relevance between the superpixels in current frame and
the initial target appearance set H with the correlation
coefficient matrix. We first define a general formula for
finding correlation coefficients as follows:

— > ab

where ¢,p € [0, 1] indicates the correlation coefficients of
superpixels a and b. The closer the ¢, is to 1, the more
relevant the two superpixels are.

In our tracking method, we define P = {p; }L € RIxN
is the superpixels set in current frame, H = {f'*.'j-}j"-"';1 €
RY*M i the initial target appearance set collected in the first
four frames, where d is the dimension of feature. Then, we
can calculate the correlation matrix Cyy = [¢;;] by Eq.(6)
for superpixels in sets P and H.

(6)

Cll €12 - 1M

€21 €22 ... C2M

s = € RN*M (7)

CN1 €N2 ... CNM

where the i-th row in matrix C,, indicates that the relevance
between the superpixel p; in set P and all superpixels
in target set H. In other words, the superpixels of set H
represent the appearance block of the target, which is the
reference standard for calculating the correlation between
pi and the target.

The advantage of using relevance to measure the current
superpixels is that it does not consider the change of
target background, and reduces the influence caused by the
change of target posture change or occlusion. However,
some background superpixels may have similar colors to the
foreground, they are usually calculated with a relatively high
relevance values. Meanwhile, the saliency map calculated in
the “Salient Superpixel Detection by Graph Construction”
section also has background superpixels with high saliency.
In order to remove these background superpixels in
correlation matrix and saliency map, we propose an iterative
segmentation method with threshold setting to segment the
foreground superpixels.

Take the correlation matrix C,, as an example, firstly, we
find the maximum value of each row of C,, to form a new
vector C,, € RV*! that is, the maximum relevance between
the current frame superpixels and the target superpixels.
Then, we define the separation thresholds o and g as
follows.

max(Cpy )

a =max(Cp) —
Iﬂil‘l(%m} {8)
1

B =min(Cy,) +

where n is an empirical parameter and set to 50 in the
experiments. Secondly, we maintain two sets of superpixels,
Sy for object foreground and S, for background. If Cy, (i) =
a, the i-th superpixel in set P is highly relevance with the
target, that is, p; is the foreground and is put into set Sy.
If Cpy(i) < B, the p; has little relevance with the target,
and is put into set Sp. For the remaining values in C), that
do not satisfy the above two conditions, new « and g are
computed according to Eq. (8), and the threshold separation
process is iterated until all the superpixels in P are assigned
as foreground or background. In the experiments, the
maximum number of iterations is set to 25.

By using the above iteration segmentation method, we
separate the superpixels in current frame in terms of
relevance and saliency to get corresponding foreground
superpixels, respectively. In Fig. 2, we select the images at
the frame 25 in videos Basketball and MountainBike and
segment them to superpixels by SLIC method [2]. Then, we
calculate the relevancy and the saliency maps for current
frame superpixels. In the relevancy map, the superpixels
which are very similar to the target appearance have high
similarity, but some background superpixels which are
similar to the color of the target are also calculated to have
high values, so the relevancy map is more obvious to the
contour of the target and sensitive to the background. In the
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Fig.2 Tllustration of the target
foreground segmented by
iterative segmentation method.
Images at the frame 25 in videos
Basketball and MountainBike
are segmented to superpixels by
SLIC method [2]. Then, we
calculate the relevancy and the
saliency maps for current frame
superpixels; To further find the
foreground superpixels, we use
iterative segmentation method
for the relevancy and the
saliency maps, respectively. The
final confidence map of current
frame superpixels is integrated
by forgeround superpixels of the
relevancy and the saliency

-Frame #25 in
video Basketball

Frame #25 in video
MountainBike

saliency map, it reflects the trend of the target motion, and
the target with its surrounding area can be well detected, and
the background has very low value. So the saliency map can
better show the approximate center of the target. Therefore,
to further find the foreground superpixels, we use iterative
segmentation method for the relevancy and the saliency
maps, respectively. The final confidence map of current
frame superpixels is integrated by foreground superpixels of
the relevancy and the saliency.

Target Locating by Confidence Map

When a new frame arrives, we first set a search
region around the previous object location, and segment
superpixels in the search region by SLIC method. Then,
we calculate saliency values and correlation coefficients of
superpixels, and find the foreground superpixels by iterative
segmentation methods. The superpixel set after iterative
segmentation is denoted as S and S, respectively.

In order to find the possible target location of the current
frame, we calculate the confidence map for superpixels by
combining the foreground superpixels of S; and S.. The
confidence of superpixel 7 is given by:

conf(i) = S, (i) U S.(i) 9)

Furthermore, we use particle filter to sample around the
target in the previous frame. The number of particles in
the experiment is 600. For each particle, we calculate the
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number of foreground and background superpixels, and then
select the particle /; with the largest confidence sum of
foreground superpixel as the best tracking position, as given
in:

N,;'r.
I = f(j 10
& argmfx;con ) (10)

where k is the index of particle box and N}{ is the
foreground number of superpixels in the k-th particle.

Target Appearance Model Updating

Compared with the background, the target exhibits similar
characteristics in a short period of time, that is, the
appearance of the target is relatively stationary in short term.
But in the entire video time domain, the video target and
background are typically non-stationary signals, and their
distribution parameters or distribution laws will change with
time. The superpixel-based model we have described makes
effective use of target foreground in the tracking frames,
but the overall appearance of the object changes with time
and the dynamic representation can not be ignored. We
introduce an adaptive strategy into updating the feature set
of target appearance.

For the candidate particles X' in frame ¢, their
confidences are the sum of the foreground superpixel
confidences. We set a threshold to detect whether occlusion
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or pose variation have taken place in the frame. The formula
is as follows.

C(p — max(conf(X"))) > p (11)

where g is the average confidence of the target estimation
in the existing frames, max(conf(X’)) represents the
maximum confidence value obtained from X particle
estimates. The larger the (¢ — max(conf(X'))) value is, the
closer the particle region is to the background. C(.) is a
normalization coefficient, and p is the empirical threshold
and is set as 0.515 in the experiment.

If the value on the left side of the Eq. (l11) is
larger, it means that there is little difference between
the two confidence values and no significant change in
the appearance of the target. We add the superpixels of
the predicted sample to the set of the target appearance.
Conversely, occlusion or distortion is likely to occur. In this
case, all the superpixels of the current frame are regarded
as background and take the estimation result of the previous
frame as the current result. The average value is also taken
as the confidence value of the current frame. Through this
adaptive update strategy, the proposed method can quickly
adapt to the changes of object during tracking and enhance
the robustness of object tracking.

Experimental Results

In this section, we evaluate the proposed tracking method
with extensive experiments in OTB100 dataset [36], and
compare our method with similar tracking methods. We
conduct performance analysis both quantitatively and
qualitatively in various scenarios, such as occlusions,
target deformation, target scale change, and target external
rotation.

Experimental Setup

We implement the proposed method in MATLAB and
run it on an Intel(R) core(TM) i7@4GHz machine with

8 GB RAM. In the experiments, the number of superpixel
segmentation is set to 200 in the first four frames of
the video, and the remaining frames are set to 300. The
parameters A and o in edge weight of salient superpixel
detection are 0.5 and 10, respectively. The parameter 5 of
threshold setting in iteration foreground segmentation stage
is 50 in Eq. (8), and the maximum number of iterations is
25. The update threshold p in Eq. (11) is 0.5.

We evaluate our algorithm on popular OTB100 dataset
[36] with 8 selected challenging video sequences (FaceOc-
clul, Basketball, Jogging. Singer2, Shaking, Boy, CarScale,
David3). These sequences cover various challenges that
object tracking often confronts. We compare our method
with 7 similar methods, namely SPT [3], FRAG [39], CT
[37], MIL [10], TLD [9], LSK [38], and Struck [11]. For fair
evaluation, we evaluate the proposed tracker against those
methods using the source codes provided by the authors.
Each tracker is run with adjusted parameters.

Quantitative Evaluation

We employ two commonly used evaluation criteria: the
success rate based on Overlap Rate and the precision based
on Center Location Error. The Overlap Rate (OLR) is the

area ratio of the intersection and union of the tracking result

. area(R,, [ Rg)
R, and the groundtruth R,. calculated as arca(Ry U Ry)" It

indicates the stability of tracker as it takes the size and
pose of the target object into account. The total success
rate is a percentage of successfully tracked frames to all
frames, where the successfully tracked frames refer to
those the overlap rate of the tracking results with the
groundtruth is bigger than 50%. Table 1 shows the overall
tracking success rate (higher is better) of the comparative
approaches on eight sequences to quantitative estimation.
Because the overlap rate can not accurately compare the
tracking methods with or without scale change processing,
we also use the Center Location Error (CLE) to summarize
the overall performance. The CLE measures the distance
between the estimated center location and the ground truth
in each frame. It indicates the accuracy of tracking the target

Table 1 Tracking Success Rate (higher is better) of the comparative approaches on eight sequences. The best results are shown in italic fonts

Sequences SPT FRAG cT MIL TLD LSK Struck Ours
FaceOcclul 0.130 0.625 0.235 0.375 0.398 0.343 0.507 0.625
Jogging 0.623 0.667 0.201 0.218 0.896 0.211 0.537 0.859
David3 0.561 0.584 0.317 0.568 0.110 0.137 0.522 0.867
Boy 0.910 0.495 0.550 0.630 0.851 0.393 0.901 0.919
Singer2 0.034 0.199 0.031 0.043 0.047 0.036 0.045 0.402
CarScale 0.763 0.579 0.615 0.596 0.479 0.558 0.563 0.762
Basketball 0.816 0.775 0.307 0.257 0.098 0.022 0.379 0.658
Shaking 0.074 0.131 0.031 0.719 0.412 0.031 0.042 0.230

A Springer



Cogn Comput

1 L = 1
'-'. ‘-" F .
09 :.' ..c' 0.9
08 4 . .
... ".’ 08
or 5 :. 0.7
-1 . e
§os; : 4 G 506
Fj ) ¢ IR—
3 05+ : 4 § 0.5 g : —
e : —=—cr o & —CT
o 04 4 ; ; «ees FRAG o 04 s wess FRAG | |
7 g 4 —TL0 s e TLOD
03 :' '_.' ....;s: 2.3 4 v LSK
| K ”’ | A — ML
%2 Yy sPT 02 seT
o1k S A * e Struck o1 s Slruch
e —Ours —Ours
0 0
0 10 20 30 40 0 0 10 20 30 0 50
Location Error Threshold (Video FaceOcc1) Location Error Threshold (Video Jogging)

ssssanmnnny

Location Error Threshold (Video David3)

o7
09
06
08+
" 0.7
é i - ’“5’ 06
. -* ‘G 05
e Q
E 0 _"cr_l g
o =
- c--u-.o---". o =
a 02 —g}
) n——— (R} ::w
o o o l
o o T Y b 10 20 30 40 50
Location Error Threshold (Video Singer2) Location Error Threshold (Video CarScale)
1 T Sca
0.9
08
o7
c
he] 5 "
g . % 05
: o4
i o 04
03
0‘2 I.-'-----..llipn
o‘ S L se®? _M .
0 - paama
e 10 =3 — = = |
Location Error Threshold (Video Basketball) Location Error Threshold (Video Shaking)

Fig. 3 The precision plots by center location errors evaluation. The location error threshold is 20 which roughly corresponds to at least 50%
overlap between the tracker and the ground truth
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center. Precision is defined as the ratio between the number
of frames with CLE less than a given threshold and the
total frames. The overall tracking performance is reported
in Fig. 3. The precision is plotted as the threshold changes,
when the position error threshold is 20, it is approximately
equivalent to at least 50% overlap between the tracker and
the ground truth.

As can be observed from the Table 1 and Fig. 3, our
method performs the best in video sequences FaceOcclul,

Singer2, Boy, David3). This shows that our algorithm can
effectively deal with occlusion and posture changes. This
is mainly because the saliency detection in our method can
estimate the approximate position of the target and help to
reduce the center location error. We note that, regardless
of whether the target object is occluded or not, the pose
changes of the target can be approximately detected by the
relevance detection of the target appearance, and thus help
to improve the overlap rate of tracking results. However,

(a) Video Faceoccl
(0CC)

(b) Video Jogging
(DEF, OCC, MB,
IPR)

=5 (c) Video David3
e (OCC. DEF, OPR.
— BC)

(d) Video Boy
(MB, FM, SV.LR)

(e¢) Video Singer2
(IV, DEF. MB, IPR,
BC)

() Video CarScale
(SV, OCC, MB. FM,
BC)

(g) Video Basketball
(DEF, OCC. FM, BC.
V)

(f) Video Shaking
(IV. OCC, MB, IPR,
BC)

s SPTD] s FRAGH?] o= CT B7] e MY [10]

Fig. 4 Quantitative comparison with different methods on eight test
video sequences. These sequences cover various challenges that object
tracking often confronts, such as Illumination Variation (IV), Scale

Struct{!!] == Ours |
]

TLDP e LSK [%8]

Variation (SV), Occlusion (OCC), Deformation (DEF), Motion Blur

(MB), Fast Motion (FM), In-Plane Rotation (IPR), Out-of-Plane Rota-
tion (OPR), Background Clutter (BC) and Low Resolution (LR)
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our algorithm is not robust enough to deal with illumination
changes and similar group movements, which makes the
overlap rate of Basketball and Shaking sequences relatively
low,

Qualitative Evaluation

In this subsection, we will qualitatively evaluate our
method by observing its behavior in different sequences.
Figure 4 shows example tracking resalts of the trackers
on test sequences with various challenges. We analyze our
tracking resulis on these sequences with respect to different
challenging situations below.

Heavy Occlusion The Fuaceoccl, Jogging, and David3
sequences contain noticeable and heavy occlusion. FRAG
and our method performed well in these sequences by
making use of the segmented inner structure of the object.
The challenge of the Faceoccl sequence is that there
are different degrees of occlusion, Most of the methods
can track the target. SPT tracker had the worst results
and regarded the ocelusion as part of the target from the
#25 frame. In the Jogging sequence, the heavy occlusion
occurred from frame #68 10 frame #79, TLD tracker
performed best due 1o its long-time detection scheme and
relocated the target after the larget appears al frame #80.
The MIL, LSK, CT, FRAG, and Struck trackers drifted
away after frame #79. Then, FRAG and Struck trackers
relocated the target at frame #112 and #191, respectively.
In the david3 sequence, the proposed tracker performed
best and the FRAG tracker performed second best. The
TLD and LSK trackers lost the target at frame #30 and
#41, respectively, when target was obscured by the roadside
indicator. The CT and Struck trackers lost the target at frame
#87 due to tree occlusion, but the Struck tracker relocated
the target as it moved back, while the CT tracker failed to
track it again.

Fast Motion and Scale Change The main challenges of
Boy, Singer2, and CarScale sequences are motion blur
caused by fast rmotion and target scale changes. The
target object also undergoes some occlusions. The proposed
tracker and SPT tracker achieved best performance in the
entire sequence. This is mainly because our superpixel-
based tracking algorithm can get the structure and motion
estimation of the object. In Boy sequence, all methods can
track the target when the target did not move very fasl.
The LSK, CT, and MIL trackers failed when fast motion
and motion blur occurred at the #2635, #401, and #508
frames, respectively. The LSK tracker performed poorly for
its local appearance model could not represent the target
appropriately. The main difficulty of CarScale sequence is
the fast moving car with tree occlusion from #159 to #176
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frames and scale change. Because the color of the tree is
similar to the target, CT and TLD trackers drifted away at
the #167 frame. SPT tracker performed best because it had
a superpixel clustering mechanism to solve the scale change
problem.

Pose Variation and Background Clutter The Basketball,
shaking sequences have drastic pose variation with motion
blur in cluttered background. In basketball sequence, there
are many similar individuals around the target, and human
body tends to deform irregularly as non-rigid motion. SPT
tracker performed best, FRAG tracker and the proposed
tracker performed second best. This is mainly because
superpixel-based tracking algorithms are effective to follow
articulated or deformable objects and are more robust to
interference from similar targets. LSK and TLD trackers
drifted away when the target had noticeable pose variation
at the #95 and #139 frames. In shaking sequence, the main
challenge is the drastic pose variation with illumination and
scale change. The MIL tracker performed best. The Struck
tracker drifted away at the #3 frame, and FRAG, SPT, LSK,
and CT trackers lost the target when full drastic illumination
occurred at the #57 frame and drifted away.

Conclusion and Future Work

In this paper, we proposed a visual tracking method based
on salient superpixel with iterator segmentation, where the
target appearance is represented by middle-level superpixel
blocks and associated color feature descriptors. The target
appearance set is used to measure the correlation between
candidate samples in subsequent frames, We detected the
saliency of superpixles by graph model and manifold
ranking to handle the importance of target foreground
and estimate the approximate motion information of the
targel. For accurately cutting the targel components, we
separated the wargel foreground and background saperpixels
by an iteration segmentation algorithm o improve initial
largel appearance. In the tracking process, we integrated
the correlation value and saliency value of the superpixel
o get the confidence map of the current frame. and used
the confidence as the observation value in the particle
filter tracking framework to achieve robust performance.
We compared our method with the existing methods on
OTB100 dataset, and the experimental resulis show that the
proposed method is effective to deformation, occlusion and
other challenges in object tracking.

We will further investigate this work. First, the correla-
tion value is calculated by Lab color features. When the
target color is similar to the background, it is easy to mis-
take the background for the foreground. Therefore, a more
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better representation of the target appearance characteris-
tics should be studied. Second, when the background is
cluttered, it is easy to mistake the background as a salient
object. We plan to add the superpixel-based optical flow
[26] information to improve the saliency accuracy of the
moving target.

Funding Information This study was partly supported by National
Natural Science Foundation of China (61772144, 61672008,
61876045), Foreign Science and Technology Cooperation Plan
Project of Guangzhou Science Technology and Innovation Com-
mission (201807010059), Guangdong Provincial Application ori-
ented Technical Research and Development Special Fund Project
(2016B010127006), the Scientific and Technological Projects of
Guangdong Province (2017A050501039), Innovation Team Project
(Natural Science) of the Education Department of Guangdong
Province (2017KCXTDO021), National Natural Science Foundation of
China Youth Fund (61602116), Innovation Research Project (Nat-
ural Science) of Education Department of Guangdong Province
(2016KTSCX077), and Zhujiang Science and Technology New Star
Project of Guangzhou (201906010057).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval This article does not contain any studies with human
participants performed by any of the authors.

References

1. Yang C, Zhang L., Lu H, Ruan X, Yang M. Saliency detection
via graph-based manifold ranking. In: 2013 L.LE. Conference on
Computer Vision and Pattern Recognition (CVPR); 2013. p.
3166-3173. https://doi.org/10.1109/CVPR.2013.407.

. Radhakrishna A, Appu S, Kevin S, Aurelien L, Pascal F,
Sabine S. Slic Superpixels Compared to State-of-the-art Super-
pixel Methods. IEEE Trans Pattern Anal Mach Intell (PAMI).
2012;34(11):2274-2282.  hutps://doi.org/10.1109/TPAMIL.2012.
120.

3. Wang S, LuH, Yang F. Yang M. Superpixel Tracking, In: IEEE
International Conference on Computer Vision (ICCV); 2011. p.
1323-1330. https://doi.org/10.1109/ICCV.2011.6126385.

4. Carsten R, Vladimir K, Grabcut AB. Interactive foreground
extraction using iterated graph cuts. ACM Trans Graph (TOG).
2004:23(3):309-314. https://doi.org/10.1145/1186562.1015720.

5. Yan Y, RenlJ, Zhao H, Sun G, Wang Z, Zheng J, Stephen M,
John S. Cognitive fusion of thermal and visible imagery for effec-
tive detection and tracking of pedestrians in videos. Cogn Comput.
2017:(9):1-11. https://doi.org/10.1007/512559-017-9529-6.

6. Vasileios B, Falk S, Nassir N, Slobodan I. Segmentation based
particle filtering for real-time 2d object tracking. In: European
Conference on Computer Vision (ECCV); 2012. p. 842-855.
https://doi.org/10.1007/978-3-642-33765-9_60.

7.Li G, Wang Z2Y, Luo J, Chen X, Li H. Spatio-context-
based target tracking with adaptive multi-feature fusion for
real-world hazy scenes. Cogn Comput. 2018:10(4):545-557.
https://doi.org/10.1007/s12559-018-9550-4.

8. Son J, Jung I, Park K. Han B. Tracking-by-segmentation with
online gradient boosting decision tree. In: IEEE International

[

9.

13.

14.

21.

22,

23.

24,

. Gao F, Ma F, Zhang Y, Wang J,

. Zhang B, Luan S, Chen C, Han J,

Conference on Computer Vision (ICCV); 2015, p. 3056-3064.
https://doi.org/10.1109/ICCV.2015.350.

Kalal Z, Mikolajezyk K, Matas J. Tracking-learning-detection.
IEEE Trans Pattern Anal Mach Intell (PAMI). 2012:34(7):1409—
1422, https://doi.org/10.1109/TPAML2011.239.

. XuC, Tao W, Meng Z. Robust visual tracking via online multiple

instance learning with fisher information. Pattern Recogn.
2015:48(12):3917-3926. https://doi.org/10.1016/j.patcog.2015.06.
004.

. Hare S, Saffari A, Torr P. Struck: structured output tracking with

kernels. In: [EEE International Conference on Computer Vision
(ICCV); 2011. p. 263-270. https://doi.org/10.1109/ICCV.2011.
6126251.

. Zhang P, Zhuo T, Xie L, Zhang Y. Deformable object tracking

with spatiotemporal segmentation in big vision surveillance.
Neurocomputing. 2016:204(C):87-96. https://doi.org/10.1016/j.
neucom.2015.07.149.

Zhang J, Zhang T, Dai Y, Harandi M, Hartley R.
Deep unsupervised saliency Detection: A multiple noisy labeling
perspective. In: 2018 LE. Conference on Computer vision and
pattern recognition (CVPR). 2018.

Gao F, Ma F, WangJ, SunJ, Yang E, Zhou H. Visual saliency
modeling for river detection in high-resolution SAR imagery.
IEEE Access. 2017:6:1000-1014. https://doi.org/10.1109/ACC
ESS.2017.2777444.

. Gao F, Youl, Wang J, SunJ, Yang E, Zhou H. A novel target

detection method for SAR images based on shadow proposal
and saliency analysis. Neurocomputing. 2017:267(C):220-231.
https://doi.org/10.1016/j.neucom.2017.06.004.

. GaoF, Zhang Y, Wang J, SunJ, Yang E. Amir h. Visual attention

model based vehicle target detection in synthetic aperture radar
images a novel approach. Cogn Comput. 2015;7(4):434-444.
https://doi.org/10.1007/s12559-014-9312-x.

Sun J, Yang E, Amir
H. Biologically inspired progressive enhancement target detection
from heavy cluttered SAR images. Cogn Comput. 2016:8(5):955-
966. https://doi.org/10.1007/512559-016-9405-9.

. Liu Q, Wang Y, Yin M, Ren J. Li R. Decontaminate feature

for tracking: adaptive tracking via evolutionary feature subset. J
Electron Imaging. 2017;26(6):1-10. https://doi.org/10.1117/1.JEL
26.6.063025.

. Ding G, Chen W, Zhao S, Han J, Liu Q. Real-time scalable

visual tracking via quadrangle kernelized correlation filters. IEEE
Trans Intell Trans Syst. 2018:19(1):140-150. https://doi.org/10.
1109/TITS.2017.2774778.

Wang W. Latent con-
strained correlation filter. IEEE Trans Image Process (TIP).
2018:27(3):1038-1048.  https://doi.org/10.1109/TIP.2017.2775
060.

Amir R, Daphna W. Extracting foreground masks towards object
recognition. In: International Conference on Computer Vision
(ICCV); 2011. p. 1371-1378. htps://doi.org/10.1109/1CCV.2011.
6126391.

Chai Y, Ren ], Zhao H, Li Y, Ren JC, Paul M. Hierarchical
and multi-featured fusion for effective gait recognition under
variable scenarios. Pattern Anal Appl. 2016:19(4):905-917.
htps://doi.org/10.1007/s10044-015-0471-5.

Ezrinda MZ, Kamarul HG, Ren J. Mohd ZS. A hybrid
thermal-visible fusion for outdoor human detection. Journal
of Telecommunication, Electronic and Computer Engineering
(JTEC. 2018.

Yan Y, Ren J, Sun G, Zhao H, Han J, Li X, Stephen M,
Zhan J. Unsupervised image saliency detection with Gestalt-laws
guided optimization and visual attention based refinement. Pattern
Recogn. 2018;79:65-78. https://doi.org/10.1109/TIP.2017.2775
060.

@ Springer



Cogn Comput

25.

26.

27.

28.

30.

31.

33

34,

33

37.

38.

. Zhang L, Dai J,

. Wu Y, Lim J,

Wang Z, Ren J, Zhang D, Sun M, lJiang J. A Deep-
Learning based feature hybrid framework for spatiotemporal
saliency detection inside videos. Neurocomputing. 2018;287:68-
83. hups://doi.org/10.1016/j.neucom.2018.01.076.

Shi I, Carlo T. Good features to track. In: 1994 1.E. Conference
on Computer Vision and Pattern Recognition (CVPR); 1994. p.
593-600. https://doi.org/10.1109/CVPR.1994.323794.

Yang F, Lu H, Yang M. Robust superpixel track-
ing. IEEE Trans Image Process (TIP). 2014;23(4):1639-1651,
https://doi.org/10.1109/TTP.2014.2300823.

Perera A, Law Y, Chahl J. Human pose and path estimation from
aerial video using dynamic classifier selection. Cognitive Comput.
2018:10:1019-1041. hups://doi.org/10.1007/s12559-018-9577-6.
Lu H, He Y, Gang W. A bi-directional
message passing model for salient object detection. In: 2018 LE.
Conference on Computer Vision and Pattern Recognition (CVPR);
2018. p. 1741-1750.

Zhou X, Li X, Hu W, Learning A. Superpixel-driven speed func-
tion for level set tracking. IEEE Trans Cybern. 2016:46(7):1498—
1510. https://doi.org/10.1109/TCYB.2015.2451100.

Han J, Eric I, Paul M, Peter H. Employing a RGB-D sensor for
real-time tracking of humans across multiple re-entries in a smart
environment. IEEE Trans Consum Electron. 2012;58(2):255-263.
https://doi.org/10.1109/TCE.2012.6227420.

2. Hong Z, Wang C., Mei X, Prokhorov D, Tao D. Track-

ing using multilevel quantizations. In: European Conference
on Computer Vision (ECCV); 2014. vol 8694. p. 155-171.
https://doi.org/10.1007/978-3-319-10599-4_11.

Xiao I, Stolkin R, Ales L. Single target tracking using adaptive
clustered decision trees and dynamic multilevel appearance
models. In: 2015 LE. Conference on Computer Vision and Pattern
Recognition (CVPR); 2015. p. 4978-4987.

Yeo D. Son J, Han B, Han JH. Superpixel-based tracking-
by-segmentation using Markov chains. In: 2017 LE. Conference
on Computer Vision and Pattern Recognition (CVPR); 2017. p.
511-520. https://doi.org/10.1109/CVPR.2017.62.

Wang L, LuH, Yang M. Constrained superpixel tracking. IEEE
Trans Cybern. 2018:48(3):1030-1041. hups://doi.org/10.1109/
TCYB.2017.2675910.

Yang M. Object tracking benchmark. IEEE
Trans Pattern Anal Mach Intell (PAMI). 2015:37(9):1834—1848.
https://doi.org/10.1109/TPAMI.2014.2388226.

Zhang K, Zhang L, Yang M. Real-time compressive tracking.
In: European Conference on Computer Vision (ECCV); 2012. p.
864-877. https://doi.org/10.1007/978-3-642-33712-3.62.

Liu B, Huang J, Yang L, Casimir K. Robust tracking using local
sparse appearance model and k-selection. In: 2011 LE. Conference

4;’_) Springer

39.

40.

41.

42,

46.

47.

48.

. Wang F,

on Computer Vision and Pattern Recognition (CVPR); 2011. p.
1313-1320. https://doi.org/10.1109/CVPR.2011.5995730.

Adam A, Rivlin E, Shimshoni 1. Robust fragments-based
tracking using the integral histogram. In: 2006 LE. Conference on
Computer vision and pattern recognition (CVPR). 2006.

Borji A, Sihite D, Itti L. Quantitative analysis of human-
model agreement in visual saliency modeling: a comparative
study. IEEE Trans Image Process (TIP). 2013:22(1):55-69.
https://doi.org/10.1109/TIP.2012.2210727.

Cheng M, Zhang G, Niloy J, Huang X, Wu S. Global
contrast based salient region detection. In: 2011 LE. Conference
on Computer Vision and Pattern Recognition (CVPR); 2011. p.
409-416. https://doi.org/10.1109/CVPR.2011.5995344.

Borji A, Cheng M, Jiang H, Li J. Salient object detection: a
benchmark. IEEE Trans Image Process (TIP). 2015:24(12):5706—
5722. https://doi.org/10.1109/TIP.20115.2487833.

Jiang M, Qian C, Yang S, Li C, Zhang
H, Wang X, Tang X. Residual attention network for image
classification. In: 2017 LE. Conference on Computer Vision
and Pattern Recognition (CVPR): 2017. vol 1. p. 6450-6458.
https://doi.org/10.1109/CVPR.2017.683.

. Mnih V, Heess N, Graves A, Kavukcuoglu K. Recurrent models

of visual attention. In: The 27th International Conference on
Neural Information Processing Systems (NIPS); 2014, vol 2. p.
2204-2212.

. Henriques J, Rui C, Martins P, Batista J. High-speed tracking

with kernelized correlation filters. IEEE Trans Pattern Anal Mach
Intell (PAMI). 2014:37(3):583-596. htips://doi.org/10.1109/
tpami.2014.2345390,

Danelljan M, Hager G, Khan F, Felsberg M. Convolutional
features for correlation filter based visual tracking. In: IEEE
International Conference on Computer Vision Workshop; 2015. p.
621-629. https://doi.org/10.1109/ICCVW.2015.84.

Lukezic A, Vojir T, Zaje L, Jiri M, Matej K. Discriminative
correlation filter with channel and spatial reliability. In: 2017 LE.
Conference on Computer Vision and Pattern Recognition (CVPR);
2017. vol 1. p. 4847-4856. https://doi.org/10.1109/CVPR.2017.
515.

Benfold B, Reid I. Stable multi-target tracking in real-time
surveillance video. In: 2011 LE. Conference on Computer
Vision and Pattern Recognition (CVPR); 2011, p. 3457-3464.
https://doi.org/10.1109/CVPR.2011.5995667.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.



P8 ap yuam [eop Aumw spoypaw Sunyoen Funsixa .M:E.“..u._v uo paseq w._._o.___w_.é Sunyjaen ?aﬁ: ‘s Juaoos :._
Ay 'saueds Xa[dwoo Ul SUOISN[I00 KAEY PUB SUOIIBLIEA
asod eaad seofiepun polqo Surpden i udym  Nse1 uonpnpou|

[apow ydeany - xumww vonejauo)) - uondaep Louaies - [axidiadng - Suryoen [Ensip spiomAay

‘Bunyoen 10alqo ur sauajeys sayio pue

‘UOISTID0 "UOHEWLIOJAP 01 2An09j2 s1 yoroadde paseq-jaxidiadns wuares pasodoxd awp ey umoys aavy synsas Suisturosg
-aouvunopad sonaq Sqpenurisqns pasaigoe poypaw pasodosd mo ey moys sinsas pruatadxa ay pue ‘depaao uo paseq
MBI SSI0INS PUT JOLID BONEO] IAIUAD U0 Paseq uoisidaid jo Suua) ur 1aseiep () €10 Ut sanbiuyaal Sunsixa ay) qum poyiaur
mo paredwod ay, “saunpasoad Sundwes pue vonewinsa aouapiuod Yog w1y aposed asojdxa am *aduasajul uonEdO| JO
AIRINI0E ) ISLAIDUL O IOUBAA[A pue Aoudies uo paseq sjaxidiadns jo punoidyoeq pue punosSaio) ayy ysmSunsip 0)
popaw uoneuawdas ploysany aanea ue asodosd ospe o 195 ouvmadde 108 2y pue spaxidiadns awepipurs i usomIag
paindwiod st aoueadar atp “Sunjoen apgay “sioidudsap Jo[od yum souemadde 198 s japowr pue punosaiog 1alqo o1
Furpuodsaniod 128 © ol $axoq 1281 mojy 153y 2 jo spaxidiadns s 1snpo apn Surjurs plojiuew pue ppow ydesd Aq
paamap st axidradns jo Louares ayg, Funepdn [apow asuemeadde pue souasajur voneso] o1 sdjay pue ‘Louatfes aanudos
pue Quepnurs dourseadde 108w o sordaum yogm spxidiadns yuares o paseq popaw Sunpoen ensia v asodosd om
‘lopow Axuares asmuSod vonuane uewny Aq pandsu raded s up SOSpIA SWIN-[EAT U1 SIUSWUOIAUD SUIPUNOLINS pu
‘UDISNEOD0 ‘UONOWI 1SB] “uonBuLIojap asod Aq pasnea suoneuea sduwreadde 108w o8] ajpuey 01 spoylaw Furyoul) [ENsiA
10] SATUI|[RYD 18T JO SI 1] "SINOYOS PUR DUR[[IIAINS 0IPIA WISI|[AIUL S8 Yons sysel uoisia sandwod [2a21-ysy uew u
parjdde Ajapim s1 yamgm ‘sawel] 0apia aannaasuod jo asuanbas v u 1sazaun jo 19afgo ue Meso] o1 s1 Surysen 1palqo Ensipy
Ppensqy

6102 2an1eny s2bunds jo ued 7] ‘eipay ssaulsng+auaps sabunds
610z aunf £ :pa1dady / 8107 J2qUadaq 67 :panaday

(Buep unfia - . .np Buagay -  buayz uabbuad - ¢ j0RYZ UIWINY -  ueYZ UIF

uonejuawbag
" sempan | 9ARIY| pue [opo ydein yum bupppes) jensip [2xidiadns juaijes

A-79960-610-655Z15/£001°01/Bioriop //sduy
uopendwoy amuboy



SPRIE SIty INoqY

suoissiwiad pue sjubiy

UORELLIOJUI [EUORIPPY

SUcnEeIePap 214yl

UOIEWIoUl JOyINY
buiptng

Saoualiajay

3}IO\ 21MN4 pUE UOISN|PUOD)

s1|nNsay [eluswWiiadx]
POIa|N pasodolg
uondNpoU]

pensqy

EERVEIETEN sainbiy suoi}dag

1ad peojumoq

=y

195 & 01Ul saxoq 12818] 1noj 181y a1 Jo spxidiadns atf] 191sno ap “Sunuel pjojiuewl pue [apou
ydeis Aq pa1oajep st extdiadns Jo Aduaipes o1, "Sunepdn [opout aoueieadde pue souaIajul
uonedo] 03 sdpy] pue ‘Adual[es aANIUZ0d pue Auepuuls soueteadde 1981e] 91 s91BISa1Ul POIYM
s[ex1diadns juates uo paseq poyiaw Sunpoel] fensia e asodoad am ‘[apout Aousipes 3AnRUS0D
uonuane uewmy Aq paxrdsut ‘1aded supy U] 'so0apIA SWN-[BaT Ul SJTUSWUOIIAUS SUIPUNOLINS
PuR ‘UOISN[220 ‘UoTIow IS8 ‘uoneuLIojap asod Aq pasned suoneLea soueteadde 19818 281e]
s[puey 0} spoyjawt Sunpe] [ensi 10] saSua[[eyd 1eaIs Jo SI 1] "SoN0qOol PUR 3dUR[[I9AINS 03PIA
JUASI{[21Ul S [ons syse] uorsia Jamdumod [paa]-ysy Auew ut parjdde Appm ST a1ym ‘satuet)

09PIA SANNDASTI0D JO 30uanbas & ul 3se19ul Jo 1palqo ue a1eo0] 01 st Sunjora 10a(qo [ensIA

Pensqy

SIS _ suoneyd g | sassaddy Z9g

3PIIE S 31D | (L207) 2€8-128 ‘€L UONDINGILIo) aAIUBOD

buepp Unlia] i NA BusjaH ‘busyz usbbusg {5 OBYZ Uliiny Ueyz uif

UOIRJUaUISaS 9ANRID)] pue
[PPOIN ydeis yym Sunjoel], [ensiA pxidiadng juaifes

610¢ |unr gz :paysiiqnd

u1 bo O yieag

yur 1aduradg @



Applied Intelligence (2019) 49:2956-2969
https://doi.org/10.1007/5s10489-019-01427-2

@ CrossMark

Sample awareness-based personalized facial expression recognition

Huihui Li' - Guihua Wen'®

Published online: 13 February 2019
€ The Author(s) 2019

Abstract

The behavior of the current emotion classification model to recognize all test samples using the same method contradicts the
cognition of human beings in the real world, who dynamically change the methods they use based on current test samples. To
address this contradiction, this study proposes an individualized emotion recognition method based on context awareness. For a
given test sample, a classifier that was deemed the most suitable for the current test sample was first selected from a set of
candidate classifiers and then used to realize the individualized emotion recognition. The Bayesian leaming method was applied
to sclect the optimal classifier and then evaluate each candidate classifier from the global perspective to guarantee the optimality
of each candidate classifier. The results of the study validated the effectiveness of the proposed method.

Keywords Facial expression recognition - Personalized classification - Dynamic selection - Bayesian

1 Introduction

Widely applied in mental health and human-computer inter-
action, emotion recognition is currently a popular research
topic in the fields of computer vision and artificial intelligence
[1-3] because it involves multiple disciplines, such as image
processing, pattern recognition, and psychology. However,
the diversity of facial expressions makes the emotion recog-
nition difficult. For example, the collected facial images might
be unidentifiable because of the lighting environment [4].
Moreover, the facial expressions of human beings are compli-
cated and diverse, with fairly significant individual differences
in skin color, age, and appearance. These differences place an
added burden on machine learning.

Currently there are many emotion recognition methods, in-
cluding deep learning and ensemble learning methods. They
train an emotion classification model and then use this model
to identify all test samples. This trained emotion classification
model remains unchanged, without considering the practical
conditions of each test sample. However, these methods are
inconsistent with human cognition laws [5] in the real world.
They model the inertial thinking and thus easily misclassify
test samples [6]. Human beings change their methods
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dynamically based on the current test samples, instead of iden-
tifying all test samples with the same method. For example,
human thinking follows the principle of simplicity (the Gestalt
principle) [7]. Simple object recognition only needs simple
methods, while complex object recognition needs complex
methods [8]. However, most of the existing machine learning
methods only consider the complexity of the whole dataset [9],
or the complexity of the local neighborhood [10], without
distinguishing the complexity of the object to be identified.
In addition, for the same test sample, each person’s emotional
recognition ability is different, which is also true for classifiers.
As the ensemble classifier emphasizes, the base classifiers
should be diverse, indicating that many classifiers have differ-
ent capabilities and complementarity [4, 10, 11]. In experi-
ments, a classifier may work well for some test samples. but
may often make mistakes for other test samples. In particular,
when two classifiers are used to classify test samples, their
classification ability may be totally opposite. Thus, it is rational
to select the classifier dynamically in such circumstances [12,
13]. This can be implemented by first searching for the local
neighborhood of each test sample. and then evaluating the
classifier’s capability through the samples in the local neigh-
borhood in order to choose the most suitable classifier by
which to classify the test samples [14]. The key issue of this
method is that a set of candidate classifiers should be generated
with high accuracy and diversity. The diversity of two classi-
fiers is reflected in terms of the ability of each to classify the
different samples. Ideally, classifiers should complement each
other so that the most appropriate classifier can be selected for
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each new test sample [10, 11]. This is different from methods
with static selection of classifiers, which occurs during model
selection. During model selection, once the classifier is select-
ed on the training set, it will classify all test samples without
considering the differences among them. The study of dynamic
classifier selection shows that it is a very effective tool for
overcoming pathological classification problems, e.g., when
the training data are too small or there are insufficient data by
which to build the classification model [9].

The primary problem of dynamic classifier selection is
measuring the ability of each classifier in classifying test sam-
ples. The most common methods for solving the problem are
individual-based metrics and group-based metrics [13]. The
former performs the measurement based on the classifier’s
individual information, such as rankings, accuracy, probabili-
ty. and behavior, while the latter considers the relationship
between the candidate classifiers. However, both measure-
ment methods select the classifier according to the neighbor-
hood of the test samples in the training set. It is difficult to
obtain the globally considered performance using local esti-
mation. Secondly. it is time-consuming to find the neighbor-
hood of each test sample from a large training set. Cruz et al.
proposed a method to dynamically select classifiers based on
machine learning [14]. Using meta-features to describe the
capabilities of each classifier in a local neighborhood, this
method first dynamically selects classifiers for test samples
through machine leamning, and then uses the selected classifier
to classify the test samples. The other type of methods not
only consider the accuracy of the classifier but also the com-
plexity of the problem, e.g., the complexity of the neighbor-
hood of the test samples [9].

Based on the local neighborhood of the test samples, both
aforementioned methods have two disadvantages. It is time-
consuming to seek the neighborhood of a given test sample
under large training data. Second, the performance of the clas-
sifier is limited to the local optimum rather than the global
optimum. Hence, this paper proposes the sample awareness-
based personalized (SAP) facial expression recognition meth-
od. SAP used the Bayesian learning method to select the op-
timal classifier from the global perspective, and then used the
selected classifier to identify the emotional class of each test
sample. The main contributions are that the idea of sample
awareness is introduced to the field of emotion recognition,
and a new emotion recognition method is proposed.

2 Related works

The SAP method proposed in this study is new in the field of
emotion recognition. It selects the classifier dynamically for
each test sample, which is different from the current dynamic
classifier selection methods. The current dynamic classifier
selection methods can be categorized into four types, which

will be compared and analyzed in this paper. The recently
developed methods for facial expression recognition are also
presented, such as those based on 3D information of face and
ensemble learning methods.

2.1 Dynamic classifier selection methods
2.1.1 Classification accuracy based on local neighborhood

These methods are based on the classification accuracy of the
local neighborhood of the test sample, where the neighbor-
hood is defined by the k nearest neighbors (KNN) algorithm
[15] or the clustering algorithm [16]. For example, the overall
local accuracy (OLA) selects the optimal classifier based on
the accuracy of the classifier in the local neighborhood [17].
Another method is the local class accuracy (LCA), which uses
posteriori information to calculate the performance of the base
classifier for particular classes [18]. In addition, another meth-
od was proposed to sort the classifiers based on the number of
consecutive correct classifications of samples in the local
neighborhood. The larger the number, the higher the classifier
is ranked to be selected [19].

There are two methods: A Priori (APRI), and A Posteriori
(APOS) [20]. APRI selects the classifier based on the poste-
rior probability of classes of the test sample in its neighbor-
hood, which considers the distance from each neighborhood
to the test sample. Unlike APRI, APOS considers each classi-
fier’s classification label for the current test sample. Based on
these two methods, two new methods were proposed:
KNORA-Eliminate (KE) and KNORA-Union (KU) [21].
KE only selects the classifier that correctly classifies all neigh-
borhoods, whereas KU only selects the classifier that correctly
classifies at least one neighborhood. Xiao et al. proposed a
dynamic classifier ensemble model for customer classification
with imbalanced class distribution. It utilizes the idea of LCA,
but the prior probability of each class is used to deal with
imbalanced data when calculating the classifier’s performance
[22]. The difference between these methods is that the local
information is used in different ways, but they are both based
on the local neighborhood of the test sample.

2.1.2 Decision template methods

Decision template methods are also based on the local neigh-
borhood, but the local neighborhood is defined in the decision
space [23] rather than in the feature space. The decision space
consists of the classifier output of each sample, where each
classifier output vector is a template. The similarities between
the output vectors are then compared. For example, the K-
nearest output profile (KNOP) method first defines the local
neighborhood of the test sample in the decision space, and
then uses a method similar to that by KNORA-E to select
the classifiers that correctly classified test samples in the
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neighborhood in order to form an ensemble by voting [24].
The multiple classifier behavior (MCB) method also defines
the neighborhood in the decision space, but the selection is
determined based on a threshold. Classifiers larger than the
given threshold are used for the ensemble [25]. Although such
methods are defined in the decision space, they are still based
on the local neighborhood of the test samples.

2.1.3 Selection of candidate classifiers

The composition of candidate classifiers is very important for
a dynamic classifier selection method since it must be accurate
and diverse. In addition to methods that generate candidate
classifiers using common ensemble classifier methods, there
are also methods that focus on selecting training subsets for
each candidate classifier [26]. For example, the particle swarm
method directly selects a training set for each candidate clas-
sifier using the evolutionary algorithm [27]. The reason why a
candidate classifier is generated by adopting different training
subsets in the ensemble classifier is that it is easy to generate a
large number of candidate classifiers that are likely to be sim-
ilar rather than different. There are some methods that use
heterogeneous candidate classifiers to make maintaining di-
versity easier.

2.1.4 Machine learning methods

The recently proposed method for dynamic selection of clas-
sifiers is based on machine learning and uses the local neigh-
borhood features (such as meta-features of the test samples,
the classification accuracy of the neighborhood samples, and
the posterior probability of classes of the classified test sam-
ples) as the training samples for machine learning [14]. In the
other method, the genetic algorithm was applied to divide
training sets into subsets, each of which is used to train a
classifier. The fitness function was defined as the accuracy
of each classifier combined with the complexity of each train-
ing set [28]. Unlike these two methods, the method proposed
in this study directly assigned each training sample to the
classifier based on the Bayesian theorem. That is, the classifier
was used as the class label of the training sample so that there
was no need to calculate the neighborhood of the test sample
and the machine learning could be global.

From the literatures mentioned above, it is discovered that
dynamic classifier selection has not yet been applied to emo-
tion recognition. The SAP proposed in this study is also dif-
ferent from currently available methods. It directly selected
the candidate classifier according to the posterior classifica-
tion accuracy calculated based on the Bayesian theorem. The
evolutionary method was not used, and meta-features were
not calculated. Instead, the proposed method directly endowed
the training samples with classifier labels so that there was no
need to calculate the neighborhood of the test samples. Since
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the learning was conducted throughout the training set, it was
also global in nature.

2.2 Face images for facial expression recognition

When facial images are transformed into feature vectors, any
single classifier can be used for expression recognition, such
as support vector machines and neural networks. One of the
differences among these methods is the application of facial
image information. Expression recognition can be performed
based on 2D static images, or expression recognition can be
performed based on 3D or 4D images. Because of the sensi-
tivity to illumination and head posture changes, the use of 2D
static images is unstable. By contrast, facial expressions are
the result of facial muscle movement, resulting in different
facial deformations that can be accurately captured in geomet-
ric channels [29, 30]. In such cases, using 3D or 4D images are
the trend because they enable use of more image information.

Previous 3D expression recognition methods focus on the
geometric representation of a single face image [31-34].
Currently, 3D video expression recognition methods empha-
size modeling dynamic deformation patterns through facial
scanning sequences. For example, a heuristic deformable mod-
el for static and motion information of the video was construct-
ed, and then the hidden Markov model (HMM) was applied to
recognize expressions [35]. Another method extracted motion
features between adjacent 3D facial frames, and then utilized
HMM to perform facial expression recognition [36]. Temporal
deformation clues of 3D face scanning can also be captured
using dynamic local binary pattern (LBP) descriptors, and then
an SVM can be applied to perform the expression recognition
[37]. Another novel method is the conditional random forest,
which aims to capture low-level expression transition patterns
[38]. When testing on a video frame, pairs are created between
this current frame and previous ones, and predictions for each
previous frame are applied to draw trees from pairwise condi-
tional random forests (PCRF). The pairwise outputs of PCRF
are averaged over time to produce robust estimates. A more
complex approach is to use a set of radial curves to represent
the face, to quantify the set using Riemann-based shape anal-
ysis tools, and to then classify the facial expressions using
LDA and HMM [39, 40]. There are also methods for facial
expression recognition using 4D face data. For example, scat-
tering operators are expanded on key 2D and 3D frames to
generate text and geometric facial representations, and then
multi-kernel learning is applied to combine different channels
of facial expression recognition to obtain the final expression
label [41, 42].

Deep learning has also been applied to recognize facial
expressions [43]. For example, a novel deep neural network-
driven feature learning method was proposed and applied to
multi-view facial expression recognition [44]. The input of the
network is scale invariant feature transform (SIFT) features
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that correspond to a set of landmark points in each facial
image. There is a simple method to recognize facial expres-
sions that uses a combination of a convolutional neural net-
work and specific image preprocessing steps [45]. It extracts
only expression-specific features from a face image, and ex-
plores the presentation order of the samples during training. A
more powerful facial feature method called deep peak—neutral
difference has also been proposed [46]. This difference is de-
fined as the difference between two deep representations of
the fully expressive (peak) and neutral facial expression
frames, where unsupervised clustering and semi-supervised
classification methods automatically obtain the neutral and
peak frames from the expression sequence. With the develop-
ment of deep leaming, some studies emphasize the modeling
of dynamic shape information of facial expression motion,
and then adopt end-to-end deep learning [41, 42, 47-49],
where a 4D face image network for expression recognition
uses a number of generated geometric images. A hybrid meth-
od uses a contour model to implement face detection, uses a
wavelet transform-based method to extract facial expression
features, and uses a robust nonlinear method for feature selec-
tion; finally, the HMM is used to perform facial expression
recognition [50].

The SAP method is different from the above expression
recognition methods. These methods are thus taken as candi-
date classifiers for SAP so as to further improve SAP’s per-
formance. This also allows SAP to easily exceed them.

2.3 Ensemble learning for facial expression
recognition

Ensemble learning is also used for facial expression recogni-
tion, which can be implemented by data integration, feature
integration, and decision integration. Data fusion refers to the
fusion of facial, voice, and text information. For example, the
fusion of video and audio is applied to recognize emotions
[51]. Meanwhile, the combination of facial expression data
and voice data is utilized to identify emotions [52]. Another
approach combines thermal infrared images and visible light
images, using both feature fusion and decision fusion [53].
This approach extracts the active shape model features of the
visible light image and the statistical features of the thermal
infrared image model, and then uses a Bayesian network and
support vector machine to make respective decisions. Finally,
these decisions are fused in the decision layer to obtain the
final emotion label. There is an automatic expression recogni-
tion system that extracts the geometric features and regional
LBP features, and fuses them with self-coding. Finally, a self-
organizing mapping network is used to perform expression
recognition [54]. When the face image is divided into several
regions, and the features of each region are extracted using the
LBP method, the evidence theory can be used to fuse these
features [55]. Furthermore, the fusion of both Gabor features

and LBP features can be applied to recognize expressions
[56]. Some methods also use SIFT and deep convolution neu-
ral networks to extract features, and then use neural networks
to fuse these features [57]. The decision level integrates the
final decision information of multiple learning models. Each
learning model participates in the processes of preprocessing,
feature extraction, and decision-making. The fusion layer
makes the final inference by evaluating the reliability of each
member’s decision-making information. For example, Wen
et al. fused multiple convolutional neural network models by
predicting the probability of each expression class for the test
sample [4]. Zavaschi et al. extracted Gabor features and LBP
features for facial images, and then generated a number of
SVM classifiers. Finally, some classifiers were selected by a
multi-objective genetic algorithm, and the final expression
label was obtained by integrating these selected classifiers
[58]. Morecover, Wen et al. proposed an integrated
convolutional echo state network and a hybrid ensemble
learning approach for facial expression classification [10, 11].

The SAP method is different from these ensemble learning
methods for emotion recognition. SAP dynamically selects a
classifier from multiple classifiers for the test sample. When a
large number of candidate classifiers are available, SAP is
more likely to find the most suitable classifier for the test
sample. These aforementioned ensemble learning methods
can be taken as candidate classifiers for SAP so that SAP’s
performance can be further improved and easily exceed that of
the existing ensemble learning methods.

3 Proposed method

In the real world, different experts may have different abilities
to identify the same sample. For example, it is justifiable to see
the best doctor, but the “best doctor™ is different for each
disease. Similarly, each person wants to attend the best school,
but different people have different definitions of the “best
school.” Therefore, this study proposed the SAP method for
facial expression recognition.

Figure 1 shows the structure of the method. The method
differs from the ensemble method that averages all classifiers
and weakens the strongest classifier so that it is theoretically
inferior to the best classifier. SAP also differs from the model
selection method that secks the best classifier from all training
samples rather than each individual sample. SAP considers
each test sample to have its own optimal classifier because
each expert has his own strengths.

The SAP method calculates the ability of each candidate
classifier to classify each sample on the training set to find the
most suitable classifier for each training sample based on the
Bayesian theorem. Using this approach, a new training set,
D {(x;, ¢;)}, ¢;eC, was constructed; that is, a label was
assigned to each training sample as the optimal classifier by
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Fig. 1 Classification process of C={c}
SAP . P(ci)
v
Test sample x —» |Select a classifier using|—» . —» ¢ = arg maxP(¢)
. t

meta-classifier

P(ICn ) l

which to classify this sample. On this new training set, a new
classifier was then trained to assign the most suitable classifier
for each test sample.

3.1 Labeling each sample with the classifier name

X = {x;|x;€ R"} is a training sample set, Y = {y;|y;€L} is
the corresponding label set, and L is the set of the labels
of the samples. There is a classifier set C= {¢]c; € Z},
where classifier ceC was used to classify sample x and
calculate the probability that it would correctly classify x.
The k-fold cross-validation method was applied to train
the classifiers with some training samples, and then the
classifiers were used to classify the test sample. If the test
sample was classified correctly. P(x|c¢) could be easily
calculated. The k-fold cross-validation method was used
to divide the training set into subsets as follows:

X = X U u X0 uXy, (1)
XiNX; =@, |Xi| = |X,l, (2)
Y = Y uru YooYy, (3)
|Xi| = |Yil. (4)

Suppose that the discriminant function of classifier ¢ in the
training set X is defined as g,y cy : X ;—Y . The prior prob-
ability of classifier ¢ was calculated as follows. The higher the
classification accuracy, the more likely it was to be selected as
the optimal classifier:

1. ... -
P(c) = T T Mgenyy, () = 3 (5)

The prior probability for classifier ¢ to correctly classify x-
; was calculated using the following equation:

P(xi|c) = %Z?Igcx\,x,(xi} =Y (6)
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#L Use c’to classify x

|

The class of test sample x

The goal was to calculate P(c|x), which is the probability
that each classifier will be selected based on the test sample.
This allows us to select the most suitable classifier from the
candidate classifier set to classify the test sample.

According to the Bayesian theorem, the following equation
can be obtained:

P(x|c)P(c) '

Plclx) = P(x)

(7)

This is similar to the assumption of the Naive Bayesian
classifier, allp(x;) = p(x;). According to the above formula,
cach training sample was labeled with the classifier name to
construct a new training dataset. When the probability of the
classifier chosen based on x is greater than a certain threshold,

D; = {(x,¢;)|P(cilx) > 6;,xeX, ¢;eC}, (8)
S = ui.i'l D;. 9)

The candidate classifiers were constructed by D:
D= {(x. ¢;)|x€S, ¢; = argmax P(c; |r)} (10)
!

Once the training sample set D was labeled with the clas-
sifier name, another classification algorithm, , was selected
to be trained on this set so as to obtain a new classification
function as follows:

hop : X—2°, (11)

¢ = argmax P(c; € h,, p(x)). (12)

Given a test sample x, we selected a suitable classifier, ¢, to
classify the test sample.

3.2 SAP for emotion recognition

Given the inputs of the training set X, the validation set X, the
classifier set C'= {¢;}, the threshold parameter o. the test
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surprise

disgust | anger
FER2013 | SES
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RAF2017

Fig. 2 Sample images from the experimental databases

sample x, as well as the output y (the label of the test sample),
the SAP algorithm was described as follows:

1. |C] classifiers were trained on training set .X.

2. Training set X was divided into & groups using the A-fold
cross-validation method.

3. Forj=1tok
(a) The jth fold of the training set was taken from the

training set to train each classifier c.

(b) The classifier ¢ was used to classify each sample x; in
the validation set X..

(c) The number of times that each sample in the val-
idation set X, was correctly classified in all folds
was calculated, and then the probability p(x;]¢)
was computed.

End

4. The probability p(x;| ¢) was normalized.

5. The probability p(c|x;) was calculated based on the
Bayesian theorem so as to assign a classifier name to each
training sample as the label.

6. Fori=1to|C

D; = {(x,¢;)|P(ci|x) > 0 & P(cilx) > P(cj|x), xe Xv}.
End

7. S=ub;

8. The classification algorithm ¢ was used to train a meta-
classifier b, p: D — 2°

9. The classifier ¢; = argmax P(c;€h, p(x)) was selected.

10. The classifier ¢; was used to classify the test samples x so
as to obtain the class y.

3.3 Time complexity analysis

As in Step 3 of SAP training k x |C| classifiers, which in-
volved a complexity of &= max(O(c;)), the other steps of
SAP were linear. The greatest complexity of the algorithm
laid in training or testing a classifier, and therefore the
complexity of the entire algorithm was max(O(c;)). SAP
spent the most time on training the classifiers using the A-
fold cross-validation method. However, this calculation
was only performed once during the training. The trained
model was used to directly classify the test samples, and
there was no need for a recalculation. Therefore, SAP was
less complex than all dynamic algorithms based on the
local neighborhoods.

4 Experimental results

4.1 Objective

The effectiveness of the proposed method was demonstrat-
ed by conducting experiments on two standard datasets. In
principle, there are many alternative classifiers for the

Table 1 The distribution of

samples in the two experimental Emotions Angry  Disgust  Fear Happy  Sad Surprised  Neutral  Total
databases Databases
FER2013-TRAIN 3995 436 4097 7215 4830 3171 4965 28,709
FER2013-PUBLIC 467 56 496 895 653 415 607 3589
FER2013-TEST 491 55 528 879 594 416 626 3589
RAF2017-TRAIN 705 717 281 4772 1982 1290 2524 12,271
RAF2017-TEST 162 160 74 1185 478 329 680 3068
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proposed method. However, in the experiments, the most
representative methods were chosen, i.e., SOFTMAX [4,
59], SVM [60], LDA [60], QDA [60], and RF [61]. Since
the SOFTMAX classifier is a widely used classifier for
deep learning, SAP can be applied to deep learning with
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the SOFTMAX classifier chosen. SVM is one of the best
classifiers for small training samples. LDA and QDA are
the simplest linear classifiers, whereas RF is the most rep-
resentative ensemble classifier. For these candidate classi-
fiers, default parameters were used in the experiments. The
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LDA algorithm was used as the meta-classifier because it
is simple and fast. In this way, two objectives will be ob-
tained. One is to prove that the dynamic selection of clas-
sifiers is superior to the constant use of a single classifier.
The other is to illustrate that the proposed method outper-
forms some ensemble algorithms.

4.2 Experimental data

The deep neural network is currently the most effective
approach for extracting the features of images, but it re-
quires a large amount of training data. Therefore,
FER2013 [62] and RAF [63] are selected as the experi-
mental data. They are generally recognized as benchmark
databases. Sample images from these databases are shown
in Fig. 2.

FER2013 has the larger amount of data and its images
are the most difficult to distinguish. Each sample in the
database has great differences in age, facial orientation,
and so on. It is also closest to real world data, with the
human emotion recognition rate in this database is 65+
5%. At the same time, the images in the database are all
gray-scale images with a size of 48 x 48 pixels. The sam-
ples are divided into seven categories: anger, disgust, fear,
happiness, neutral, sadness, and surprise. This database
consists of three parts: FER2013-TRAIN for training a
deep neural network, FER2013-PUBLIC as the validation
set, and FER2013-TEST as the test set. Their sample dis-
tributions are shown in Table 1.

The Real-world Affective Faces Database (RAF 2017)
was constructed by analyzing 1.2 million labels of 29,672
greatly diverse facial images downloaded from the
Internet. Images in this database vary greatly in subject
age, gender, ethnicity, head poses, lighting conditions, and
occlusions. For example, the subjects in the database
range in age from 0 to 70 years old. Fifty two percent
are female, 43% are male, and 5% ambiguous; mean-
while, 77% are Caucasian, 8% are African-American,
and 15% are Asian [62]. Therefore, it has large diversity
across a total of 29,672 real-world images, with seven
classes of basic emotions and 12 classes of compound
emotions. To be able to objectively measure the perfor-
mance for the following testing. In our experiments, the
database with seven basic emotions is considered; these
emotions are anger, disgust, fear, happiness, neutral, sad-
ness, and surprise. This database is split into a training set
RAF2017-TRAIN with 12,271 samples and a test set
RAF2017-TEST with 3068 samples.

The features of all datasets were extracted using the deep
neural network model [59]. Parameter analysis and time com-
plexity analysis were performed on FER2013 since it is harder
to be classified. In SAP. the j-th fold of training samples was
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taken from the training set to train the classifier, and
FER2013-PUBLIC was taken as the validation set.
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Table 2 The number of samples
assigned to each classifier with

Number of samples assigned to be classified to each candidate classifier

the optimal threshold (m = 10)

Meta-classifier ~ SOFTMAX LDA QDA RF SVM Accuracy (%)
SOFTMAX 50 15 42 36 3446 70,91
LDA 133 75 112 167 3102 71.08
QDA 562 0 0 3027 0 70.05
RF 2 1 2 3584 70.86
SVM 0 0 0 0 3589 70.80

Bold data indicates the best meta classifier with the best accuracy

4.3 Evaluation on complementarity among candidate
classifiers

The key to SAP is the complementarity among the candidate
classifiers. To objectively evaluate the complementarity among
the candidate classifiers, the concept of classification satisfiability
was proposed. The probability measure for any sample to be
correctly classified is referred to as classification satisfiability,
which can be calculated using the following equation:

—
() = 2L (13)

n

where # is the number of classifiers. If classifier f; can correctly
classify x, then f{(x) = 1; otherwise f{(x) = 0. The greater the clas-
sification satisfiability, the more likely the sample is to be cor-
rectly classified.

Figure 3 shows the distribution of the classification
satisfiability of the test samples for a given set of candidate
classifiers, where FER2013 was used. The samples were
ranked according to classification satisfiability from high to
low. In Fig. 3a, when the candidate classifiers SOFTMAX,
SVM, LDA, QDA, and RF were used, 868 samples were
classified completely incorrectly, 2270 samples were correctly
classified, and 451 samples were correctly classified by at
least one classifier. Figure 3b shows that when the candidate
classifiers SOFTMAX, SVM., and RF were used, 922 samples
were classified completely incorrectly, 2371 samples were
correctly classified, and 296 samples were correctly classified

by at least one classifier. Figure 3c illustrates that when the
candidate classifiers SOFTMAX, SVM, and LDA were used,
939 samples were classified completely incorrectly, 2366
samples were correctly classified, and 284 samples were cor-
rectly classified by at least one classifier.

In Fig. 3, there were approximately 900 samples whose clas-
sification satisfiability was 0, indicating that these samples could
not be correctly classified by any classifier. It was inevitable for
them to be misclassified. This indicated that the candidate clas-
sifier set is incomplete and needs to be extended so as to reduce
the occurrence of such situations. As shown in Fig. 3, the number
of erroneously classified samples was different for different sets
of candidate classifiers. Since there was a maximum number of
candidate classifiers in Fig. 3, a minimum number of
misclassified samples was expected. Moreover, the greater the
number of candidate classifier sets, the greater the number of
samples whose classification satisfiability was greater than zero.
This indicates that some candidate classifiers can correctly clas-
sify these samples. In these cases, the accuracy of the meta-
classifier is extremely important. Ideally, the meta-classifier
should be able to select the candidate classifier that can correctly
classify these samples.

4.4 Parameter performance analysis
Since the SAP algorithm used the machine learning meth-

od (meta-classifiers) to assign classifiers to test samples,
the meta-classifiers needed to be trained by the samples

Table 3 The number of samples
assigned to each classifier with

Number of samples assigned to be classified to each candidate classifier

the optimal threshold (m = 30)

Meta-classifier ~ SOFTMAX LDA QDA RF SVM Accuracy (%)
SOFTMAX 58 31 42 156 3302 70.86
LDA 135 105 77 176 3096 70.99
QDA 35 357 98 0 3099 70.08
RF 1 1 1 2 3584 70.86
SVM 0 0 0 0 3589 70.80

Bold data indicates the best meta classifier with the best accuracy
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Table 4 The number of samples
assigned to each classifier with

Number of samples assigned to be classified to each candidate classifier

the optimal threshold (m = 50)

Meta-classifier ~ SOFTMAX LDA QDA RF SVM Accuracy (%)
SOFTMAX 43 34 49 131 3332 70.88
LDA 110 124 98 54 3203 70.99
QDA 2 418 39 3130 0 70.05
RF 1 1 0 2 3585 70.86
SVM 0 0 0 0 3589 70.80

Bold data indicates the best meta classifier with the best accuracy

whose labels were candidate classifier names. The labels
for these samples were automatically completed on the
training and verification sets, and their classification
satisfiability was found to be the average of the test accu-
racy on the cross-validation set. The greater the classifi-
cation satisfiability, the more reliable the classifier name
that was labeled on the test sample. Therefore, a classifi-
cation satisfiability below the threshold may have been
wrong and therefore should be removed from the training
samples of the meta-classifier.

FER2013-TRAIN was divided into 100 pieces for
cross-validation, 99 of which were used as the training
set each time. FER2013-PUBLIC was used as the valida-
tion set, with the validation results taken out m times. For
example, m = 10 means that the validation results obtained
for the first ten times were taken out. and then the average
of the test accuracy on the validation set was calculated to
obtain the classification satisfiability for each sample on
the validation set. Based on the given threshold parame-
ters, the samples in the validation set with values larger
than the threshold were selected as the training samples of
the meta-classifier. After the meta-classifier was trained,
each test sample in FER2013-TEST would be assigned a
candidate classifier.

Fig. 5 Comparison of candidate
classifiers and SAP in terms of
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The classification effect of SAP was related to m and the
threshold & of the classification satisfiability. The results in
Fig. 4 demonstrate that different thresholds affected the clas-
sification accuracy of SAP. However, the range of the best
results was relatively large and stable. This indicated that the
optimal threshold o could be easily obtained experimentally.
Secondly, the optimal thresholds corresponding to different
meta-classifiers were different. Although the classification ac-
curacy of SAP varied with different values of m, its change
with threshold o was similar, which indicated that a relatively
small m could be selected as the threshold parameter to reduce
the time cost of the experiment.

Figure 4 also shows that the effectiveness of different meta-
classifiers was different because the number of test samples
assigned to each candidate classifier was different. As shown
in Tables 2, 3 and 4, the more dispersed the assigned test
samples, the more complementary they were and the more
effective the classification. Additionally, the assignments were
unbalanced. Effective candidate classifiers were in the major-
ity. However, when all were assigned to the majority, the clas-
sification became ineffective. This behavior was associated
with unbalanced data, which could be further improved with
methods that are good at dealing with classification of unbal-
anced data.

Classification times of classifiers (ms)

— —
LDA QDA RF SVM SAP
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Table 5 Recognition rates of

SAP and the candidate classifiers Candidate classifiers Ensemble

on the three test sets
Data SOFTMAX LDA QDA RF SVM Ensl Ens2 Ens3 SAP
FER2013  0.6996 0.6999  0.6949 0.6941 0.7080 0.7052  0.7035 0.7069  0.7108
RAF2017  0.8165 08132 08145 08136 08132 0.8184 08158 08171 0.8181

The bold entry shows that it is the best result in the compared methods

The experimental results show that LDA as the optimal
meta-classifier was not only effective but also fast. In later
experiments, only LDA was used as the meta-classifier.
SVM as the meta-classifier led to the worst effect since it
assigned all the test samples to itself.

4.5 Time complexity analysis

When classifying the test samples, SAP first used a meta-
classifier to assign a candidate classifier to each test sample,
and then used the selected candidate classifier to classify the
test sample, which added to the classification time. However,
LDA was applied as meta-classifier in this study. Since it
worked quickly, the time it added to classification was negli-
gible. As shown in Fig. 5, it was much smaller than the max-
imum RF but larger than the minimum LDA and QDA. This is
because SAP assigned many samples to SVM and RF, which
thereby improved the emotion recognition accuracy. Among
all the candidate classifiers, SVM had the highest accuracy:;
however, SAP was more accurate than SVM, and its classifi-
cation time was only slightly bigger. Therefore, the compre-
hensive advantages of SAP are noteworthy.

4.6 Comparison of standard datasets

SAP only selected the optimal classifier from the candidate
classifiers. We addressed the question of whether it was better

Table 6 Recognition results obtained by the selective ensemble
methods on FER2013

Selective integration algorithm Accuracy (%)
Kappa [64] 68.74
QSEP [65] 68.49
DFEP [65] 68.82
Inconsistent EP [65] 69.38
DREP [66] 70.05
Complementarity method [67] 68.82
00 [68] 70.52
MRMREP [59] 70.66
ECNN [4] 69.96
SAP 71.08

The bold entry shows that it is the best result in the compared methods

) Springer

than the single and ensemble versions of these candidate clas-
sifiers. For FER2013, each method adopts FER2013-TRAIN
as the training set and FER2013-TEST as the test set. For
RAF2017, each method adopts RAF2017-TRAIN as the
training set and RAF2017-TEST as the test set.

All the results are shown in Table 5, where Ens! denotes
the combination of SOFTMAX, LDA, QDA, RF, and SVM;
Ens2 indicates the combination of SOFTMAX, RF, and SVM;
and Ens3 denotes the combination of SOFTMAX, LDA, and
SVM. It can be observed that SAP is better than both the
ensemble classifier and single candidate classifier for the
FER2013 database. The ensemble classifier is not better than
the best candidate classifier SVM, but it is more stable.
Besides, the ensemble method and selective ensemble method
were relatively effective in emotion recognition; however, as
shown as in Table 6, the SAP method was shown to be supe-
rior to some ensemble methods, where the accuracy rate of
ensemble methods comes directly from the original literature.
Due to different techniques used in ensemble methods, such as
feature extraction, the comparison of effectiveness here should
only be used as a reference.

On RAF2017, SAP still outperforms any single candidate
classifier. However, it seems that SAP is slightly worse than
Ensemble 1, which contains all candidate classifiers, but it
works faster.

5 Conclusion

The SAP method proposed in this study is innovative because
it adopts a global approach to dynamically selecting the opti-
mal classifier for each test sample. It used the Bayesian theo-
rem to calculate the posterior probability of each sample, and
then labeled the candidate classifier name to each sample ac-
cording to its posterior probability. As a global method, SAP
can be used to avoid the effects of noise and to reduce the time
it takes to search for local neighborhoods when classifying the
test samples. The meta-classifier, which was linear, was
shown to be efficient and fast.

Although SAP requires a large number of basic classifiers,
it is different from ensemble learning. The ensemble classifi-
cation method needs to run multiple classifiers simultaneously
to classify the test samples, which makes their work compar-
atively slower. It is the same for all test samples. SAP selects
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the classifier most suitable to classify a given test sample from
the given basic classifiers. This is more consistent with human
cognition laws. [n experiments, SAP’s effectiveness in emo-
tion recognitien was shown to be significantly better than that
of any candidatc classificr, and the same was nearly truc for
the recognition effect of the ensemble of these candidate clas-
sificrs. Scecondly, SAP is different from the traditional maodel
sclection method. Model selection involves selecting a suil-
able model by testing on the training data, and then this model
18 used o classifly all test samples. In the process of classifi-
cation, this model is unchanged. SAP changes dynamically
according to the test sample, and therefore has a personalized
classification ability.

The key technique of SAP is that it requires a method to select
a suitable classifier for any given test sample. This classifier is
critical for ensuring the accuracy of SAP. At present, a linear
classifier is selected. In the fiture, we will choose a more suitable
classifier to finish this task, and nonlinear classifiers may be con-
sidered. Secondly, SAP depends on a large munber of candidate
classifiers being available, The more candidate classifiers avail-
able, the more suitable a classifier can be selected for the given test
samples, thus leading to greater classification accuracy. In the
future, more candidate classificrs will be considered, and thesc
candidatc classificrs should be diversc. Finally, the advantage of
SAP is that it makes full use of global infermation, but the disad-
vantage is that it fails o utilize local information. In the future, we
will comsider both glebal and local information simultancously so
as to select a more accurate classifier to classify a given test
sample. Therefore, the accuracy of SAP can be further improved.
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G5 v 5| FI#% 30 LIN Kaihan, ZHAO Huimin, LU Jujian,et al. Face detection and segmentation method based on Mask R-CNN (1.
Computer Engineering,2020,46 (6) :274-280.

Face Detection and Segmentation Method Based on Mask R — CNN

LIN Kaihan,ZHAO Huimin, LU Jujian,ZHAN Jin, LIU Xiaoyong, CHEN Rongjun

(School of Computer Science, Guangdong Polytechnic Normal University , Guangzhou 510665, China)

[Abstract] Face detection is an important research direction in computer vision and information security, which has been
widely studied over the past few decades. In the traditional face detection method, there is no pixeldevel segmentation
process, which leads to the problem of face features with noise and unsatisfactory detection accuracy. In order to overcome
this shortcoming. a face detection and segmentation method based on Mask R-CNN is proposed in this paper. In this
method, ResNet401 and RPN is used to generate Rols,and RolAlign faithfully retains the exact spatial locations to generate
binary mask through Fully Convolution Network. In order to train the model, this paper constructs a face dataset with
segmentation annotation information. The experimental results of well-known face detection dataset show that the proposed
method has better face detection effect and can achieve pixeldevel face information segmentation at the same time.

[Key words] face detection; Mask R-CNN algorithm ; instance segmentation; RolAlign algorithm; Full Convolutional
Network (FCN)
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Fig.1 The model framework of the proposed algorithm
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Fig.2 Schematic diagram of RPN algorithm
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L ¥
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[ I ] L Bl

3 RolAlign &ikfE
Fig.3 RolAlign algorithm procedure
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Fig.4 Procedure of bilinear interpolation algorithm
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FEBPTE L.
2.4 fkmEoe X

A0 B Mask R-CNN #5258 7 3 MT & Bl
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RIF B E 8o B kR X
1
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E %17 B XL/ vyl O
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(CH1994-2021 China Academic Journal Electronic Publishing Touse. All rights reserved.
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Fig.5 Test image detection results
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Fig.6 FDDB datasets detection performance curve
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Fig.7 AFW datasets detection performance curve
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Table 1 Performance comparison of
different dataset %
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Table 2 Comparison of detection time of

different datasets 5
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Analysis of Object Tracking Algorithms Based on Deep Learning Technologies
HUANG Zhi-hui, ZHAN Jin, ZHAO Hui-min, ZHENG Peng—gen, LV Jv—jian,LIN Kai—han

{College of Computer Science, Cuangdong Polytechnic Normal University, Guangzhou Guangdong 510665)

Abstract:Visnal tracking is one fundamental problem in computer vision research. With the rapid
development of artificial intelligence in recent years, more and more attention has been paid to the rescarch
ol largel 1racking lechnology. AL the meanlime, deep learning has developed rapidly and gradually becomes
a mainstream research direction hecause of its powerful ability of representing features and ontstanding
performance over traditional algorithm in image classification, object recognition, natural language processing
and so0 on. TFirstly, a briel overview ol the I1raditional targei tracking algorithm and ils exisling problems are
summarized. Then, from the perspective of the depth model, the visual tracking algorithms based on deep
learning in recent yvears are classified. The framework. advantages and disadvantages of some main depth
learning—based racking algorithms are introduced, analyzed and compared, and OTB 2015 dalasel is used o
test the performance of each algorithm. Finally, the existing challenges of in—depth learning tracking method
are discussed and prospects for further research are given.

Key words: visual tracking; deep learning; [ealures represenling; compuler vision
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Robust Image Watermarking Algorithm Based on Block Compressed Sensing

and Overcomplete Dictionary
ZHAO Ruo-yan, HUANG Zhi-hui, XIAO Bing, ZHAO Hui-min, ZHAN Jin

{College of Computer Seience, Cuangdong Polytechnic Normal University, Cuangdong Guangzhon 5106635)

Abstract: The structural characteristics of overcomplete dictionary have a vital inflnence on the
performance of image recognition, therefore, the design of overcomplete dictionary is a fundamental task in
image spurse representalions. Wilth the requirements of infloarmation {orensics and high precision resloration in
the image. this study proposes an adaptive robust image watermarking algorithin, which consists of the block
compresscd scnsing and the sparse representation of overcomplete dictionary. A structure adaptive multi-
componenl sparse represenlalion and walermark implementation model are construcied by the size distribution
features of block random projection energy of watermarking image, and are classified inta smooth, texture and
cilge structure isotropic regions. In addition, a multi-component overcomplete dietionary is designed with
consislenl morphology. The extracl of walermark and [ingerprint image reconstruction both benelited [rom Lthe
prior knowledge abont multi—camponent construction and sparse representation of dictionary. The experiment
results verify the eflectiveness of the proposed method,

Key words: compressed sensing; overcomplele diclionary; fingerprinl image; struciure; walermark
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